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Abstract—In this paper we present a new method for the
extraction of discipline-specific terms from medical documents.
Due to the small text corpora and the specific nature of medical
documents, there are limitations for approaches that are solely
based on term frequencies. A combination of such methods with
procedures that are sensitive to semantic aspects is therefore
promising. We use word embeddings in a neighborhood context
based method which we call Snowball because of its layerwise
way of working. Snowball is integrated together with established
methods into an end to end pipeline with which we can process
documents to extract relevant terms. Proof of concept is given on
a gold standard created recently together with experts in medical
coding. The preliminary results highlight the feasibility of our
approach and its potential for automated, machine learning based
text processing in the medical context.

Index Terms—Machine learning, natural language processing,
text mining, term extraction, machine learning applications

I. INTRODUCTION AND MOTIVATION

Medical specialist language has been subject of several
research efforts. Medical ontologies such as SNOMED CT
[1] or MeSH [2] are well-known, valuable knowledge sources
to support the search for medical publications. Medical terms
from the ontology can be used as search keys in repositories
of medical publications, such as PubMed [3]. The nature
of patient-related documents, such as medical reports and
referral letters differs from medical publications in terms of
scope, medical language, and linguistic expression. It has been
observed that each hospital, insurance company, and further
health organization has an own body of terms for medical doc-
umentation which is task- and discipline-specific to a very high
degree. Moreover, the terminology from medical ontologies
has a low rate of occurrence in patient-related documents. In
addition to medical terms, paraphrasing terms from everyday
language are prevalent. Both types of terms, general and
specialist terms, are relevant to retrieve, summarize, or classify
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such documents. For instance in an accident report of an
emergency hospital (cmp. Fig. 3), 17-year-old, boy and
during inline skating might be as important as the
medical term clavicle. In the medical history document for
an insurance, the term collarbone might be used instead of
clavicle. There is a research gap to create a disciplinary-
specific body of terms that comprises the relevant terms from
both, medical and everyday language to characterize patient-
related documents.

The paper proposes an automated procedure for term ex-
traction which is capable to learn from text corpora of limited
size and generality. In brief, the procedure comprises two
steps. First, word embeddings are learned following the well-
established, hierarchical softmax learning algorithm resulting
in a continuous-bag-of-words (CBOW) model [4]. Second,
only those terms from the CBOW model are retained in the
body of terms that are in close neighborhood to a seeding
set of medical terms. A novel Snowball method is introduced
for this step where the cosine similarity for the word em-
beddings determines the neighborhood of terms. The degree
of neighborhood induces the layers of a snowball of relevant
terms with the medical terms in the core. The approach has
been developed and evaluated in the TLDia project1 in the
application domain of medical coding in German language,
i.e. the annotation of patient-related documents with diseases
and health problems. Today, medical coding is still a tedious
task which is mainly performed by medical documentation
staff. Term extraction is a first step towards the long-term
goal of automated medical coding. Coding can be regarded a
classification problem for documents based on terms. Relevant
terms from a document corpus serve as the input space for the
classification algorithm. Organizing the terms in an ontology
in future will allow to augment the classification method
with semantics. Further, it will provide a means for transfer

1https://tinygu.de/TLDia



learning, i.e. to reuse and adapt the learned body of terms in
related contexts [5].

The paper is organized as follows: related work is discussed
in Section II. The extraction method is presented in Section III
and evaluated by an experiment in Section IV. Section V
provides a conclusion and a brief discussion of future work.

II. RELATED WORK

Term extraction, also called automatic term recognition
(ATR), has been studied since the nineties [6] and is still far
from being solved [7]. In contrast to our work, many ATR
approaches consider termhood as a major criterion for term
relevance. Termhood is defined as the degree that a linguistic
unit is related to domain-specific concepts [6]. Termhood
includes that a term appears relatively more frequent in that
domain than in others [8]. Our notion of term relevance goes
beyond termhood since everyday language plays an important
role in addition to medical terms. We do not distinguish
between general and specialist language and denote this by
discipline-specific language.

In the application field of information extraction in patient-
related documents, Apache cTAKES [9] is a popular tool
applying rule-based ontology mapping of POS tagged noun
phrases. Using dictionary lookups, UMLS [10] concepts
are extracted and mapped onto ontologies such as ICD or
SNOMED-CT. Generally, this results in relatively high recall
values at the cost of a low precision, since all potential
concepts are considered relevant [11]. Authors of [12] em-
ployed cTAKES to evaluate concept extraction of translated
clinical notes using a German OpenNLP model and the Ger-
man UMLS database. They were confronted with comparably
worse recall values due to the less extensive size of the German
UMLS database. These approaches depend on the content of
databases, whilst our approach is more flexible in changing the
seeding set. cTAKES’ is utilized by [13] for concept extraction
in an automated clinical coding task. Extracted concepts are
mapped to either SNOMED-CT or ICD-9 ontology to later
serve as features to augment text data in a binary classification
task. Common supervised machine learning approaches used
in [11], [13], [14] are not applicable to our case due to the lack
of labeled training data and the small corpus size. Another
dictionary-based approach is used by [15] who take several
dictionaries for term lookup and a regular expression based
rule engine to extract biological terms such as protein names.
A approximate dictionary lookup technique was implemented
by [16], calculating the importance of a component in a
multi-word expression to handle the shortcomings of a direct
dictionary lookup. In our work, we try to mitigate the effect
of linguistic variants of concepts by applying specialized pre-
processing for the German language and including a terms
neighborhood using a word2vec model.

III. TERM EXTRACTION METHOD

The goal of the term extraction method is to learn a body
of relevant terms from a text corpus called source corpus and

from a dictionary of technical terms to reflect the discipline-
specific language. Since medical notes tend to be noisy the text
corpus is prepared in a pre-processing procedure first before
the actual term extraction is performed.

A. Pre-processing

Medical documents are full of short sentences, acronyms,
spelling mistakes and measures [17]. Additionally, compound
words consisting of two or more words are common in the
German language and increase vocabulary size [18]. Multiple
pre-processing steps are required to address these obstacles.
Fig. 1 depicts our pipeline. A given text is tokenized using
a slightly modified version of the well-established NLTK
[19] tokenizer (language parameter set to ’german’) that
preserves sentence integrity on abbreviations. Stop words
(based on the NLTK German list), special characters, and
numerical values are removed. We then use the RNNTagger
[20] for Part-of-Speech tagging and token lemmatization.
Abbreviation detection and disambiguation are based on a
dictionary lookup combined with context similarity measures
of resolved acronyms using the German fastText [21] word
embedding model. Abbreviation disambiguation makes use of
the document context, for which an initial run of TF/IDF
is necessary. Compound splitting also requires the fastText
model and is the final step of the pre-processing pipeline.
Note that the order of steps in the pipeline is obligatory:
Tokenization, cleaning and POS tagging need to be handled
first, since the subsequent token-modifying steps require clean
singly tagged tokens. The latter three steps must begin with
lemmatization, because abbreviation resolution and compound
splitting perform better on lemmatized tokens. Abbreviation
resolution must precede compound splitting, as the resolution
of an abbreviation can be a compound word, i.e. the token
HWK is left unchanged by the lemmatizer and is then resolved
to the compound word Halswirbelkörper (cervical vertebral
body) during abbreviation resolution and is then split into
Hals|Wirbel|Körper.

This pre-processing pipeline is applied to each text used
in term extraction, i.e. training and test documents and the
dictionary of technical terms.

B. Term Extraction

We now describe our semantic aware Snowball method for
single term extraction as an alternative for pure frequency-
oriented methods.

The name Snowball reflects the basic idea of the method:
layers of terms are added iteratively to the body of terms
according to their similarity to terms already in the snowball

Fig. 1. Pre-processing pipeline.



Algorithm 1: Snowball
input: voc = word2vec model vocabulary set, rv =
dictionary of technical terms ;
cc = f(rv ∩ voc);
layer0 = cc;
i=0;
repeat

cc = cc ∪ layeri;
θi+1 = θ(i+ 1);
layeri+1 = f(

⋃
v∈layeri Nθi+1

(t) \ cc);
i = i+ 1;

until layeri = ∅;
output: cc set of concept candidates;

(see Fig. 2). The core seeding set of concept candidates is
the intersection of a source corpus voc and the pre-processed
technical term dictionary vocabulary rv. We use word2vec
embeddings [22] for both the source corpus and the technical
term vocabulary. Starting with this core set, more domain
relevant terms are collected layer-wise by adding neighbors
of each of the members in voc to the candidate set. Each term
for which a concept candidate with a cosine similarity above
a dynamically adapted threshold θi exists is added to the next
layer.

Let simcos(x, y) be the cosine similarity of two terms
x, y relative to some trained word2vec vector representation
of a vocabulary V with x, y ∈ V . For v ∈ V and
0 ≤ θ ≤ 1 we define the θ-similarity neighborhood of v as
Nθ(v) = {u ∈ V : simcos(v, u) ≥ θ}. f : 2V → 2V is a
linguistic filter that only lets pass nouns, proper names and
attributive adjectives. The value of θi is computed with the
following sigmoidal function θ (i) = 0.2

1+e−(i−m) + 0.7 so that
the threshold grows asymptotically towards 0.9 and requires
higher similarity the further we move away from the core set.
Parameter settings for m are discussed below.

Our snowball method (see alg. 1) runs until no further terms
are extracted. Alternatively, a maximum number of iterations
imax could be specified as stop criterion.

Fig. 2. Snowball uses the intersection of source corpus and dictionary of
technical terms vocabulary as seeding set. Layers are added successively using
word similarities with different similarity thresholds.

In the next section we apply Snowball and TF/IDF on
exemplary test cases to compare the results achieved with
both methods. We use TF/IDF as described in [23] with a
dynamically shortened set of extracted terms to reduce the
number of false positives which are caused by terms of lower
relevance extracted from documents too short. Therefore, we
restrict term extraction to the top n TF/IDF values, with n
set to 67.4% of the document length for full coverage and
44.1% for part coverage. Both values for n were determined
with grid search optimizing the F1 score. Beyond comparing
the two methods, we also investigate potential synergies by
combining the results of both methods.

As measure for the quality of the extracted set of terms
in the following we observe the coverage of the final set of
candidate terms on the annotated test documents in different
experimental setups.

IV. EVALUATION

In our evaluation we first compare results achieved by our
Snowball method with results of TF/IDF on a discipline-
specific corpus. We chose TF/IDF, since it is a common
baseline of unsupervised statistics-based key phrase extraction
methods [24]. The second aspect of the evaluation is mea-
suring the impact of single steps (lemmatization, abbreviation
resolution, compound splitting) of our pre-precessing pipeline
on the quality of the term extraction. Additionally, we illustrate
the impact of the parameter m on the θ function for the
similarity threshold in the Snowball method.

A. Experimental Setup

We provide a repository2 for our evaluation standard of
the Jena Synthetic Clinical Corpus (JSynCC) [25] and a
parameter file for word2vec, TF/IDF and Snowball. JSynCC3

and the gensim word2vec4 implementation are available on the
internet.

Since our later use case is based on the German language,
we decided to use the ICD-10-GM5 vocabulary as dictionary
of technical terms and JSynCC as data basis for our test.
Otherwise, it is difficult to find German data in the clinical
domain for NLP applications, such as Annotated Corpora for
Term Extraction Research (ACTER) [26] which is a data set
for term extraction in text for heart failure or the Medical
Information Mart for Intensive Care (MIMIC-III). It holds a
extensive collection of patient data [27], but both data sets are
not available in German.

Our built of the JSynCC consists of 1,058 medical case
descriptions, henceforth referred to as documents, originating
from 10 books of diverse topics. While each of the books
has been considered for equal topic distribution, we randomly
selected 5% of the documents as test cases for term extraction.
We obtained 1,006 documents for the source corpus and
42 documents for the test corpus, whereas 11 duplicates

2https://github.com/TLDia2019/4TH-IEEE-MNLP
3https://github.com/JULIELab/jsyncc
4https://radimrehurek.com/gensim/
5ICD-10 German Modification



were removed from overall corpus. For validation purposes,
the test corpus documents were annotated manually. Three
expert annotators collected single and multi-word expressions,
such as Röntgenaufnahme (X-Ray) and schmerzhafte
Schwellung (painful swelling), respectively, for each of the
test documents and agreed in a discussion on a consensus
list of 2,583 expressions in total. For this reason we also
considered the evaluation on multi-word expressions using
partial coverage of terms.

The JSynCC word2vec model is trained using CBOW and
hierarchical softmax. Because of the comparatively small
corpus size we chose an embedding dimension of 16 (compare
rule of thumb: dim = 4

√
|vocab| [28]) with a relatively high

window size of 14 with the aim to consider a rather broad
context. Minimum word count is set to 3 and the model
is trained in 4 iterations. The intersection is determined on
the text representations of the corpus and the ICD-10-GM
vocabulary.

Performance measures of TF/IDF and Snowball are com-
pared as well as the impact of the pre-processing steps. We
measure the coverage on terms as full and partial cover-
age so that we also consider tagging of multi-word expres-
sions in the annotated list. Full coverage means that a term
completely matches an annotated expression. For example
Röntgenaufnahme is found as a single term and is also
element of the annotated expression list. A term is considered
as partly covered if it is a part of the annotated expres-
sion. For instance, the existing overlap of the extracted term
Schwellung and the annotated expression schmerzhafte
Schwellung is counted as a partial coverage.

The pre-processing pipeline can be configured to schedule
pre-processing steps in the pipeline for ablation studies.

Table I depicts the setup of pre-processing configurations
under examination. While configuration C∗ includes the pre-
processing steps lemmatization, abbreviation resolving and
compound splitting, C⊥ does not make use of any of them.
Iterations CL and CA include lemmatization and abbreviation
resolving, respectively. Compound splitting is enabled in CC .

For each of the five configurations, source and test doc-
uments have been treated identically. After processing the
source data, test data was processed and the extracted terms
were tagged in the documents.

Recall, precision and F1 score have been measured for the
five configurations for each method. Those are TF/IDF, Snow-
ball and the combination of both (combined = {TF/IDF ∪
Snowball}).

Regarding our novel method, we make the hypothesis H1,
which assumes that the Snowball method performs well under

TABLE I
PIPELINE CONFIGURATIONS WITH VARYING PRE-PROCESSING STEPS

INCLUDED.

Method C∗ C⊥ CL CA CC

Lemmatization x x
Abbreviation Resolving x x
Compound Splitting x x

the conditions of a small corpus in a specific language.
For the ablation study, we formulate two more hypotheses.
Hypothesis H2 assumes that C⊥ performs worse than C∗,
since in C∗ all pre-processing steps are activated and therefore
are supposed to yield better extraction performance due to
text normalization. We assume that we reduce data sparsity
applying lemmatization and compound splitting and refine
semantic relations inside the word embeddings by resolving
abbreviations. The third hypothesis H3 assumes that the
combination of all pre-processing steps C∗ provides better
term extraction results than the standalone configurations CL,
CA, and CC .

B. Experimental Results

Fig. 3 illustrates our processing pipelines output given an
input text6. The output text is tokenised into sentences (line
numbers) and tokens. Lemmata and resolved abbreviations are
marked with square brackets and curly brackets, respectively,
while angle brackets denote split compounds. Extracted terms
(TF/IDF & Snowball) are marked with asterisk and annotated
terms with circumflex.

Table II depicts the precision (P), recall (R), and F1 score
(F1) values for the five configurations each used together with
TF/IDF, Snowball and the combination of both. This shows
that for every configuration the precision of Snowball is higher
than of TF/IDF. TF/IDF principally achieved higher recall
values compared to Snowball except for partial coverage in
CC . Also, the F1 score of Snowball is higher in comparison
to TF/IDF in all configurations. The combined approach shows
higher recall values than Snowball and TF/IDF separated
and mixed results for precision and F1. The high recall of

6Translatable as: ”A 17-year-old boy has fallen on his right shoulder while
inline skating. During the clinical examination you discover a painful swelling
in the area of the shaft center of the right clavicle. You order an X-ray of the
clavicle a. p. and tangential.”

[INPUT]
Ein 17-jähriger Junge ist beim Inlineskaten auf die
rechte Schulter gefallen. Bei der klinischen
Untersuchung finden Sie eine schmerzhafte Schwellung
im Bereich der Schaftmitte der rechten Klavikula.
Sie veranlassen eine Röntgenaufnahme der Klavikula
a. p. und tangential.

[OUTPUT]
1 Ein[ein] 17-jähriger[17-jährig]<17|jährig>

Junge* ist beim[bei] Inlineskaten* auf die[der]
rechteˆ Schulterˆ* gefallen[fallen].

2 Bei der klinischen[klinisch]ˆ Untersuchungˆ*
finden Sie eine[ein] schmerzhafte[schmerzhaft]ˆ
Schwellungˆ* im[in] Bereich* der Schaftmitte
<Schaft|Mitte>* der rechten[rechte]ˆ
Klavikulaˆ*.

3 Sie veranlassen eine[ein] Röntgenaufnahme
<Röntgen|Aufnahme>ˆ* der Klavikula* a. p.
{anterior-posterior}ˆ und tangentialˆ*.

Fig. 3. Exemplary input and output of the pre-processing and term extraction.
Square brackets denote lemmata, curly brackets indicate a resolved abbrevi-
ation and angle brackets split compounds. (∗) denotes extracted terms, (̂ )
annotated expressions. Text taken from [29]



TABLE II
TERM EXTRACTION RESULTS PER CONFIGURATION AND METHOD.

TF/IDF Snowball Combined
Conf. Cov. P R F1 P R F1 P R F1

C∗
Partial 45.72 77.35 57.47 58.69 75.53 66.05 44.92 97.21 61.45
Full 23.33 57.22 33.15 35.29 45.41 39.72 23.28 58.54 33.31

C⊥
Partial 49.85 69.73 58.14 55.85 66.55 60.73 46.25 96.36 62.50
Full 22.97 48.63 31.20 32.23 38.40 35.05 24.08 58.42 34.10

CL
Partial 49.73 72.13 58.87 57.90 66.94 62.09 47.24 95.93 63.31
Full 23.41 51.18 32.13 34.06 39.37 36.52 24.29 58.34 34.30

CA
Partial 49.63 69.53 57.92 55.73 67.36 61.00 46.08 96.40 62.35
Full 22.89 48.43 31.09 31.90 38.56 34.92 24.11 58.42 34.13

CC
Partial 45.33 73.48 56.07 56.66 74.10 64.22 43.87 97.44 60.50
Full 22.57 54.78 31.97 33.68 44.06 38.18 22.94 58.54 32.96

combined indicate the benefits of using both methods to cover
almost all relevant elements. This is emphasized by the small
intersection in C∗, where |TF/IDF ∪ Snowball| = 3, 779 and
|TF/IDF ∩ Snowball| = 1, 610 terms.

Direct comparison of the different configurations shows that
C∗ has achieved the highest recall for TF/IDF and Snowball.
This also holds for the precision and F1 of Snowball and
the F1 for full coverage of TF/IDF. Furthermore, applying no
pre-processing C⊥ gives the best precision result for partial
coverage on TF/IDF. CL leads to the best precision results for
TF/IDF (full coverage) and both coverage types in combined.
Additionally, it provides the best results for F1 in combined
and F1 (partial coverage) of TF/IDF. CC gives the highest
recall for combined.

Fig. 4 illustrates the impact of choosing different values
for the parameter m of the threshold function θ. Having set
the upper and lower boundaries to 0.7 and 0.9, respectively,
results in a first threshold of 0.85 for m = 0. The algorithm
converges after 4 layers with 1,547 candidate terms, which
is the lowest number for this experiment. With increasing m,
the final number of candidate terms increases, too, while the
number of layers fluctuates between 3 and 4. Choosing m = 7
gives an initial threshold of 0.7, and a final similarity threshold
of 0.72 after 4 layers and 3,664 candidate terms in total. The
higher m is set, the steeper is the decline of the layer size
with increasing θ. To stay in the snowball metaphor: the higher
the value of m the more snow is collected in the beginning,
eventually resulting in the biggest snowball.
During a grid search, we found the optimal m regarding F1

score is 5.

C. Implications

We consider H1 confirmed since Snowball has a higher F1

score than TF/IDF due to a higher precision and a comparable
recall (partial) in C∗. Additionally, we can see that the intersec-
tion of TF/IDF and Snowball is small. This makes Snowball a
good complement for TF/IDF. The intersection of the ICD-10-
GM corpus and JSynCC contains between 9,000 and 11,000
expressions, depending on the pre-processing configuration.
Snowball makes use of around 40% of the terms, i.e. the
Snowball method supplies a large selection of terms.

Hypothesis H2 has been confirmed for Snowball. TF/IDF
precision and F1 score of C⊥ is higher for partial coverage

Fig. 4. Increase of vocabulary per layer depending on θ which is influenced
by parameter m of the sigmoidal function.

metrics compared to C∗, where recall is still higher in
C∗. For TF/IDF, the effect of pre-processing is varying and
requires further analysis regarding the impact of each step.

With regard to H2, we have seen that all pre-processing
steps together (C∗) lead to generally good results. The Snow-
ball results show that all separated processing steps have
lower values than C∗. Compound splitting CC has the greatest
impact on recall and F1 score, while lemmatization CL
improves precision. On the other hand, compound splitting has
a negative effect on TF/IDF precision. The best precision for
TF/IDF is obtained in C⊥ (partial coverage) or CL (full cover-
age). Abbreviation resolution generally shows no improvement
to the methods. Compound splitting increases the terms that
are found in general, this is mainly reflected in a higher
true positive and false positive rate. Lemmatization reduces
the overall terms that are found but mostly false negatives.
Abbreviation resolving seems to have a marginal impact on the
term extraction at all. The reason for this may be the small size
of the corpus and the rate of abbreviations per document. The
above observations lead to the interpretation that hypothesis
H3 is confirmed for the Snowball method but rejected for
TF/IDF, since CL has higher precision (full coverage) and F1

score (partial coverage) than C∗.

V. CONCLUSION AND FUTURE WORK

The proposed approach of machine learning using word
embeddings with shallow linguistic information has achieved
promising experimental results. It is liable that further appli-
cation fields for term extraction will benefit in addition to the
chosen application field of coding German medical documents.

In our experiments the combination of the well estab-
lished statistical extraction method TF/IDF with our novel
Snowball method has a higher term coverage than standalone
application. The layer-wise addition of candidate terms using
a word2vec model makes use of semantic features in a corpus
based on a discipline-specific seeding set of vocabulary. The
pre-processing ablation study revealed the positive effects of
lemmatization for both methods and compound splitting for
Snowball, while the results of abbreviation resolution remained
below our expectations.

The long-term goal of our term extraction is the enrichment
of an ontology in the medical domain (MeSH). In next steps of



our research we will therefore address the subsequent steps in
the ontology enrichment process. We focus on the extraction
of relations between terms and between terms and concepts
in the base ontology. Further, we will work on improving
the pre-processing pipeline by adding negation handling and
spell checking which is promising because analysis of our cor-
pus showed numerous negations and spelling mistakes. Also,
further evaluation of the meaningfulness of components such
as abbreviation resolution, which is currently an error-prone
method. It increases data sparsity if it creates two different
resolutions for one acronym in the same document. We expect
better results using BERT for word disambiguation. The source
corpus for the word2vec model can be increased in size with
the use of additional corpora, for example Wikipedia articles
belonging to the Medicine category. Pre-trained models, e.g.
fastText, will also be tested. Additionally, further examination
of the growth of the Snowball layers and the assessment of
the layer quality will provide deeper insight into the behavior
of that method. The feasibility of extending our approach to
a multi-term expression extraction method by applying a n-
gram-based word2vec model will also be investigated, to fully
match our annotated expression. Additional potential candidate
methods are C-Value/NC-Value, n-gram-based TF/IDF and
conditional random fields (CRFs).
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