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Abstract. A central issue in Textual Case-Based Reasoning (TCBR) is
the creation of structured case representations from text. Usually these
systems apply a Bag-of-Words indexing approach, only few use more ad-
vanced methods. We aim at combining TCBR and the recently emerged
process oriented Case-Based Reasoning (POCBR). Therefore we devel-
oped a workflow extraction framework which allows deriving a formal
representation based on workflows (wf) from textual process descrip-
tion. The framework is based on a pipes-and-filters architecture and uses
NLP tools to perform information extraction steps. Besides these stan-
dard tasks, our framework is able to incrementally create wf models by
analysing and modifying the wf models. In detail we present the step of
anaphora resolution. Anaphora resolution is a part of the creation of the
data-flow, which shows the flow of the data-objects through the wfs. We
performed an evaluation of the data-flow for 37 workflows.

1 Introduction

The creation of structured case representations from text has been a central
research issue in Textual Case-Based Reasoning (TCBR) for several years [1].
Many Bag-of-Words indexing approaches have been developed based on infor-
mation extraction methods [2, 3]. A couple of TCBR approaches extract infor-
mation beyond Bag-of-Words in order to facilitate adaptation of text [4] and
more advanced similarity measures for case retrieval[5]. Recently, the extrac-
tion of workflows (wfs) for structured case representations has been introduced
in research on process-oriented Case-Based Reasoning (POCBR) systems [6, 7].
Traditionally, workflows are ”the automation of a business process, in whole or
part, during which documents, information or tasks are passed from one par-
ticipant to another for action, according to a set of procedural rules” [8]. In a
broader notion, wfs describe any flow of activities not necessarily in the sense of
a classical business process that involves several participants. This more general
view on wfs is used during the paper. A wf consists of a set of activities com-
bined with control-flow structures like sequences, parallel or alternative branches,
and loops. In addition, activities consume resources and create certain products,
which both can be physical matter (such as cooking ingredients or a physical
business card) or information. Samples for wfs are the step-by-step creation of a



business card, the processing of an order from a customer or a cooking procedure
for preparing a meal.

The extraction of wfs from textual descriptions requires Natural Language
Processing (NLP) [9]. NLP tool-chains apply a set of transformations to a stream
of text data called filters. However, standard NLP tool-chains [10, 11] are not
adequate for wf extraction since they do not cover wf-specific filters. Further,
the adaptation of a standard NLP tool-chain to a new text corpus is quite
laborious. Wf extraction requires a certain degree of flexibility. As an example,
the source for the extraction might be a Web page with semi-structured content
like cooking recipes. If a new Web page with a slightly different structure of
the content is integrated, some of the extraction filters should be exchanged or
omitted. We identified a research gap addressing a flexible, partly domain-specific
tool-chain dedicated to wf extraction. This paper presents on a novel filter-and-
pipe framework for the extraction of wfs from textual process descriptions. This
paper is organized as follows. In the next section we describe the framework and
a short description of the application in the cooking domain. The subsequent
section introduces the data-flow creation and anaphora resolution (see section
3) approaches followed by an evaluation and the discussion of the results. The
paper ends with the related work, a short conclusion and an outlook on our
future work.

2 Workflow extraction framework

Systems which process natural language need to be flexible and extensible. While
there are a lot of systems for generic NLP tasks, there is none for wfs. Therefore
we developed a framework which should support the flexibility that is needed for
such an application. The framework is based on a pipes-and-filters architecture.

2.1 Workflow representation

The target of wf extraction is a formal representation of the wf in a wf description
language. Our wf description language is block oriented and based on the data-
model of the CAKE framework1, this enables us to use the built-in functionality
of the framework for Case-Based Reasoning [12]. A wf consists of the control-
flow and the data-flow. The control-flow describes the order in which activities
are executed. An activity processes resources like information or ingredients. The
simplest form of a control-flow is a sequence of activities. A sequence can contain
an XOR-, AND-, or LOOP-blocks. These building blocks cannot be interleaved
but they can be nested. In addition an activity has a set of semantic descriptors,
resources and products. A semantic descriptor is for example the name of the task
or additional information which describes ”how” a task should be performed, e.g.
”for 10 minutes”. Resources contain a set of semantic information, these describe
additional information about the resources, e.g. amounts or if a resource should
be preprocessed like ”chopped”.
1 Collaborative Agile Knowledge Engine



2.2 Information extraction software

The framework uses the information extraction software SUNDANCE (Sentence
UNDerstanding ANd Concept Extraction) developed by Ellen Riloff [13]. SUN-
DANCE performs the usual NLP task like tokenization or part of speech tagging
but we use SUNDANCE because it has good balance between coverage and ro-
bustness.

The SUNDANCE parser assigns syntactic roles (subject, direct object, and
indirect object) to text snippets based on a heuristic. Then the SUNDANCE
information extraction engine tries to fill a case frame as follows. Each case
frame specifies a trigger phrase. If the trigger phrase is detected in a sentence
the according case frame is activated. This means that the activation functions
of the frame try to match the specified linguistic patterns with the syntactic
roles. A slot specifies a syntactic role whose content is extracted from the text.

2.3 Extraction pipeline

The framework is based on a pipes-and-filters [14] architecture. Such an ap-
plication is a sequence of filters which are connected by pipes. A filter is a
self-contained element which performs a data transformation step on the data-
stream. The pipes channel the data-stream from the output of a filter to the
input of the subsequent filter. A data-stream is sent through this pipeline and
each filter is applied to the stream.

At the beginning of the pipeline, the case initially consists of the textual
process description. While the case passes through the pipeline it is enriched
with additional structure. At the end of the pipeline we have a complete case
consisting of the textual process description and the formal wf representation.

Our framework extends the original pipes-and-filters architecture. We allow
two different types of filters. The first one, the so called local filters operate
with a focus on one case. The second one, the window filters collect a part of
the case-stream (e.g. 5000 cases) and operate on that. The model of a window
filter is necessary, because the framework processes a stream of cases which is
potentially infinite. The intention is to employ statistical methods for a larger
number of textual process descriptions. The statistical approaches benefit from
the pipes and filter principle because we employ them on processed data. This
intermediate data is the result of the preceding steps of the extraction pipeline.
It contains less noise and has more structure than the raw input data.

Figure 1 shows a sample pipeline for the cooking domain. The different filters
are created manually the details are described in [6].

3 Data-flow creation and anaphora resolution

In this section we introduce our method which is used to resolve anaphoras in
a cooking wf. An anaphora is a linguistic entity which indicates a referential tie
to some other entity in the same text [15]. The anaphora resolution is necessary



Fig. 1: Overview of the extraction pipeline for the cooking domain.

to complete the data-flow. Several approaches exist to perform the anaphora
resolution. Our anaphora resolution approach is based on frequent sequential
pattern. We chose this approach because it does not need a complex ontology.
We are going to describe the mining and the application of those patterns.

onion green pepper

add

olives

saute

oregano

garlic

boil

mushrooms

water

add

ditali

mix

rocket

In a large skillet until tender

Fig. 2: Sample workflow for cooking rocket pasta with vegetable.

Listing 1.1: Sample transactions for
workflow in Fig. 2.

WorkflowId , TransactionTime ,{ Items}
0 ,0 ,{ Dita l i , rocket , water , herbs ,

onion , mushrooms , g a r l i c ,
oregano , green pepper}

0 ,1 ,{ onion , green pepper}
0 ,2 ,{ ga r l i c , mushrooms , o l i v e s ,

oregano}
0 ,3 ,{water}
0 ,4 ,{ d i t a l i }
0 ,5 ,{ rocket}

Listing 1.2: Top 10 pattern.
0.025: < item=butter><item=dough>
0.024: < item=butter><item=mixture>
0.024: < item=f lour ><item=batter>
0.021: < item=eggs><item=batter>
0.021: < item=f lour ><item=dough>
0.018: < item=yeast><item=dough>
0.016: < item=baking powder><item=batter>
0.016: < item=butter><item=batter>
0.015: < item=ga r l i c ><item=mixture>
0.015: < item=van i l l a ><item=batter>

3.1 Mining sequential pattern

We use a method that was presented by Agrawal [16] to mine sequential patterns
in a sequence of transactions. Listing 1.1 displays the transactions which are
created from the wf in Fig. 2. It assumes that the wf has the id 0. The items
at the transaction at time 0 are taken from the corresponding ingredient list of



the original recipe. For the details of the sequential pattern mining algorithm
we refer to the original paper [16]. The algorithm delivers a set of sequential
patterns (see Listing 1.2) with a corresponding support value. The minimum
support value which we use is 0.005. This value is domain dependent and needs
to be tuned for a specific domain.

3.2 Creation of data-flow

A sequential pattern can be seen as an association rule. The left side of the rules
is the first item-set and the right side of the rule the second item-set of a sequen-
tial pattern. A sequential pattern like e.g. 〈(groundbeef, tomato), (pastasauce)〉
would result in an association rule {ground beef, tomatoes} ⇒ {pasta sauce}.
Two observations about anaphoras in cooking wf can be made. Firstly anaphoras
are not enumerated in the resource list. Secondly resources of an anaphora are
used before the anaphora or are included in the resource list.

The first observation enables us to delete a lot of unnecessary rules. We can
delete all rules whose right side contains an ingredient.

The creation of the data-flow is a two phase procedure. The first phase is
related to the extraction of tasks. Activities are usually extracted with a set
of resources related to them. These resources are used as products. The second
phase is the anaphora resolution and the creation of products. We implemented
three different approaches which we are going to introduce.

Fig. 3: Illustration of M. A and M. B.

Method A(M. A, see Fig. 3) is based on the observation, that a lot of
anaphoras contain the token ”mixture”. This approach searches for resources
which contain this token. If such a resource is found, we copy the resource and
delete the token mixture. Now the root resource is produced. In the next step
we scan the resources of the preceding activities for this root resource. For those
activities we check if they contain multiple resources. In that case we create a
sole product root-product + ”mixture” for that activity. At the end we complete
the data-flow in the way that products are copied as resources to the next ac-
tivity. For Fig. 3 the resource ”flour mixture” is found at the activity ”knead”.
After deleting the token ”mixture” we get the resource ”flour”. We search for the
resource flour in the preceding activities and we find it at the activity ”combine”



and the activity uses four resources. We assume now, that the activity combine
produces the product ”flour mixture”

Method B (M. B, see Fig. 3) includes M. A. In addition it iterates over all
activities, starting at the first. For each resource of the activity, it is checked if
there is an association rule with a matching right side. If such a rule is found, it
is looked if one of the previous activities has a resource matching the left side of
the rule. We assume then that the anaphora enters the wf at the activity where
the left side of the rule is found. Therefore we add the right side of the rule(the
anaphora) as sole product of that activity. In the case that multiple rules are
found, the one with the best support value is chosen. In Fig. 3 the search for a
right side of a rule results with the resource ”dough”. After a match, the algo-
rithm searches the preceding activities for the resources of the left side of the
rule ”flour, eggs, water”. These resources are linked to the activity ”combine”.
Although the activity has more resources than the left side of the rules enumer-
ates (the resource ”olives” is not included in the rule) the sole product ”dough”
is created for the activity ”combine”.

Method C (M. C)includes M. B. A domain specific list of items is added. This
list in order to filter out items which were incorrectly extracted as resource. In
the cooking domain this list is used to filter out cooking ware.

4 Evaluation

This section describes our hypotheses and our data-flow evaluation approach.
The performance of the different methods was measured using the standard
evaluation functions Precision, Recall and F-measure [17]. We tested three hy-
potheses. The first one is that the data-flow created by M. A has the best preci-
sion in comparison to M. B and M. C. The second one states that the data-flow
created by M. B has a better recall than M. A. The last one declares that the
data-flow created by M. C has the highest F-measure in comparison to M. B and
M. C.

4.1 Experimental Setup

The experiment was performed on a set of 37 recipes. These recipes were selected
randomly from a set of 36 898 recipes which were crawled from a cooking com-
munity website2. A human expert modelled the data-flow for the recipes in the
test set. This served as the golden standard for the evaluation. As the evaluation
aimed at the data-flow our expert got the control-flow which was automatically
extracted as framework for the golden standard wf. This approach eliminated
the paraphrasing and granularity problem of the control-flow. The expert was
allowed to use all resources and products that she thought should be in the
data-flow, even if they were not mentioned in the text. We got a semantically
correct data-flow. The only constraint was, that the expert was not allowed to

2 www.allrecipes.com



Recipe PA PB PC RA RB RC FA FB FC

Mexican Egg Bake 0.55 0.55 0.55 0.67 0.67 0.67 0.61 0.61 0.61

Classic Thumbprint Cookies 0.58 0.37 0.37 0.32 0.29 0.29 0.41 0.33 0.33

Cranberry Glazed Roast Pork 0.48 0.46 0.52 0.31 0.31 0.33 0.38 0.37 0.41

Table 1: Results of the evaluation for selected cases.

use synonyms for products which were mentioned in the original recipe texts. If
a product was mentioned in the text, this term must be used in the data-flow.
This restriction should reduce the paraphrasing problem for the data-flow. We
adapted them to our scenario. Every activity in the golden standard wf had per
definition a corresponding activity in the evaluated wf.

Let T and T ′ be sets of activities of the wfs W and W ′. W ′ is the golden
standard wf. Each activity ti ∈ T has a corresponding activity t′i ∈ T ′ which are
equal except for the resource and product sets. Let Ii and I ′i be resource sets and
Oi and O′i product sets for the activities ti and t′i. The precision for an activity
ti ∈ T is defined as: precision(ti) = |Ii∩I′i|+|Oi∩O′i|

|Ii|+|Oi| The recall for a activity is

defined as: recall(ti) = |Ii∩I′i|+|Oi∩O′i|
|I′i|+|O′i|

This leads to the evaluation functions for a wf: precision(W ) = 1
|T |

∑|T |
i=1 precision(ti)

recall(W ) = 1
|T |

∑|T |
i=1 recall(ti)

The F1 measure is defined as: F1(W ) = 2 precision(W )∗recall(W )
precision(W )+recall(W )

4.2 Results

Table 1 and Table 2 show that the results for the three methods are very close.
The best average precision is achieved by M. A. Table 1 shows that only for 7
cases the application of additional filter (M. B) reduces the precision compared
to M. A. The best average recall is performed by M. C. We are going to interpret
some of the results and examine the case of the ”Mexican Egg Bake” recipe for
which the results are equal for the three methods. This can happen, when no
matching association rule is found and when no cookware item is filtered out
by the stop-list. For the sample of the ”Classic Thumbprint Cookies” recipe a
wrong association rule is chosen, therefore the precision and the recall is lower
for M. A & B as it is for M. A. A very interesting case is the one of ”Cranberry
Glazed Roast Pork”. There we see a drop in precision from M. A to M. B. There
we see first a wrong rule is used in M. B which is corrected by M. C, which ends
in a higher precision for M. C. The values of the recall might raise the question,
how is it possible that a filter step produces a higher recall. Due to the fact that
the filter step is preceding the association rule mining step in the pipeline, we
can get a different set of association rules. If the rule mining step would precede
the filter step, then indeed the results would show a higher precision but a recall
which cannot be higher than before the filtering.



P R F1

M. A 0.5127 0.3034 0.3812

M. B 0.4828 0.3124 0.3793

M. C 0.4892 0.3130 0.3817

Table 2: Summary of the average results for the three methods for precision (P), recall
(R) and F1-Measure (F1).

5 Discussion

The results show that the data-flow which we create has room for improvement.
This evaluation is more a formative evaluation, we want to identify the promis-
ing approaches which are useful for the future work. The results of the previous
section indicate that the benefit of the statistical anaphora resolution is low com-
pared to the result which is achieved with the simple approach of M. A. Although
we try to build an evaluation approach which reduces the paraphrasing problem
for the control-flow, it still remains for data-flow. The measurement approach
is pessimistic because it uses only lexical comparison to decide if a product is
relevant or not. For example broth and soup would be rated as a mismatch even
if they are semantically very close or sometimes even equal. Therefore in reality
the results of M. B and M. C should be better than the measurements of the
evaluation. Our intention is to develop an anaphora resolution method which
does not need any ontology or other special domain knowledge. The evaluation
has shown, that our approach cannot fully distinguish between an anaphora and
a cooking tool. Therefore we need a list of cooking tools to differentiate between
a cooking tool and an anaphora but we don’t need a complex ontology. The
evaluation has shown, that the application of a filter for cooking tools produced
better results.

6 Related work

We are going to present related work of different research areas. The area
of statistical anaphora resolution had been approached by computer linguists.
Gasperin and Briscoe [18] showed a statistical approach for anaphora resolution
in biomedical texts. They built a system which was based on the naive-Bayes
classifier. Markert et al. [19] showed an approach that was based on the num-
ber of results of a search engine query. The queries were built with all possible
antecedents for that anaphora and the anaphora themself they were embedded
in sample phrases e.g. ”fruits such as apples”. The TellMe [20] system allowed
the user to define procedures trough utterances in natural language which were
interpreted by the system and transformed to formal wf steps. In comparison to
our system, the process of the TellMe system was interactive; the user might get
feedback from the system and could specify his input.

Friedrich et al. [21] developed a system to extract a formal wf representation
of a textual process description. To avoid noise, a manual preprocessing step



was applied. Our approach is capable to process textual content as it is. The
work of Dufour-Lussier et al. [7] is very similar to ours. They extracted a tree
representation of recipes from text. In contrast to our method, the focus was
on food components which were transformed by cooking activities to other food
components. The TAAABLE ontology was applied to resolve references in the
text by matching sets of food components, e.g. “blueberry” and “raspberry”
with “fruits”. They presented in [7] an evaluation for the data-flow. Their system
delivered very good result. However the test set was not representative and they
were only counting the first occurrence of a product within a recipe.

7 Conclusion and future work

In this paper we presented a stream based framework for wf extraction. During
the development of the different methods for anaphora resolution we experi-
mented and tried a lot of ideas. The framework supported this work by its
flexibility. A similar effect can be expected during the development of new appli-
cations for other domains. The framework allowed analysing and incrementally
building wfs. We presented a wf extraction application for the domain of cooking.
We presented three different anaphora resolution approaches. Two approaches
used association rules which were created during an analysis of the case-base of
wfs. The evaluation was performed with wfs which had a semantically correct
data-flow created by a human expert. In the future we are going to develop an
extraction application for a different domain.
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