
A Resource Model for Cloud-Based Workflow Management Systems
Enabling Access Control, Collaboration and Reuse

Sebastian Görg1, Ralph Bergmann1, Sarah Gessinger1 and Mirjam Minor2

1Department of Business Information Systems II, University of Trier, Germany
2Wirtschaftsinformatik, Goethe University of Frankfurt a. M., Germany

{goergs, bergmann, sarah.gessinger}@uni-trier.de, minor@informatik.uni-frankfurt.de

Keywords: Access Control - Workflows - Collaboration - Experience Reuse

Abstract: Cloud-based workflow management systems provide platforms for modeling and execution of workflows
while offering the common benefits of cloud computing. Additionally, the opportunity for workflow reuse
and collaborative modeling could support agile business, as better workflows can be created according to a
particular demand of the business with less effort. This paper addresses the issue of workflow reuse and col-
laborative modeling within a community of users. We present a new resource model for workflow related
resources as well as a proposal for an access control mechanism. The proposed methods are currently under
development within the workflow management system CAKE.

1 INTRODUCTION

During the last years the cloud-based computing par-
adigm emerged. It allows a shift from local IT-
systems and information to the internet-cloud. In the
cloud, service provider can offer web-based applica-
tions which replace local distributed and heteroge-
neous systems. As high network bandwidths become
available, the usage of cloud-based applications de-
livers the same speed and response times as local ap-
plications. Compared to traditional IT-infrastructures
cloud computing has attractive features (Liu et al.,
2011): It leads to lower maintenance costs, more re-
sources can be shared, they are easier to scale and
more reliable.
The Workflow Management Coalition (WfMC) de-
fined a workflow as “The automation of a business
process, in whole or part, during which documents,
information or tasks are passed from one participant
to another for action, according to a set of procedu-
ral rules” (Coalition, 1999). Respectively, a Work-
flow Management System (WfMS) defines, creates
and manages the execution of workflows. In general a
WfMS is an information system for the management
of business processes.
A cloud-based Workflow Management System pro-
vides a web-based platform for the modeling and exe-
cution of workflows. There are different trends and
professional goals for current cloud-based WfMS.
There are WfMS with a focus on a particular mar-

ket, e.g. cflow1 on jewelry retailers and health care,
nowwecomply.com on compliance, or Taverna2 on
scientific workflows. These systems are easy to un-
derstand and to setup for their customers. On the other
hand, there are more comprehensive systems like
RunMyProcess.com or Visual Workflow by Sales-
Force3, which allow to develop applications by mod-
eling a flow of custom software components or web
services. Both trends show that cloud-based WfMS
are an emerging market.
Nevertheless, today’s cloud-based WfMS have in
common that they do not take full advantage of the
collaboration and experience reuse features the cloud
paradigm can provide. They provide the basic secu-
rity features of classical WfMS, but omit the oppor-
tunities of collaborative workflow modeling and of
sharing and reuse of the procedural knowledge within
the workflows.
An example for the benefit of collaborative work-
flow modeling in cloud-based WfMS is the opportu-
nity in gaining better workflows. Many enterprises
especially small and medium-sized enterprises have
only a few employees with the skills to design and
maintain business processes and related workflows.
This is a big issue when enterprises grow and need to

1http://cavintek.com/
2http://taverna.org.uk/
3http://www.salesforce.com/platform/

cloud-platform/workflow.jsp



shift from pure operational business to a more strate-
gic alignment. Workflow modeling is a tedious task
which growths with the size of the enterprise. Work-
flow modelers must have expert knowledge on the
business of the enterprise in order to model the work-
flow. Usually, the workflow modeler cannot have
such complete in-depth knowledge of an expert. A
better approach for this problem would be that the
business-experts are more involved in the modeling
while being empowered to model the workflow by
themselves. Therefore the workflow modeler can ben-
efit from a cloud-based WfMS which supports col-
laborative modeling. The workflow modeler can in-
vite an expert by granting access to him/her to the
affected workflow. Thereby the expert can use the
workflow modeling user interface with an arbitrary
browser without installing additional software. The
workflow modeler and the expert can then collabora-
tively model the workflow.
Another example for the benefit of cloud-based
WfMS is the possibility to share best-practice work-
flows. Sharing of workflows means that a work-
flow modeler allows other modelers or employees to
see and to reuse a best-practice workflow for their
own purposes. In particular, administrative work-
flows are very similar throughout different depart-
ments, e.g. the deployment of software-updates or
escalation workflows. If the knowledge of such inter-
nal workflows is easy to obtain and to discover, there
is a chance for synergy because the departments are
more informed about the internal workflows of other
departments and thus could benefit from the shared
knowledge.
The remainder of this paper is organized as follows.
In the next section the requirements for a cloud-based
WfMS are depicted considering different application
domains. Section 3 describes the CAKE system, the
cloud-based WfMS, and its system architecture. The
next two sections describe the resource model and the
access control mechanism. Section 6 describes the
workflow reuse and collaborative workflow modeling.
We conclude by discussing the current state of devel-
opment.

2 REQUIREMENTS

The presented concept for collaboration and reuse of
workflows was developed based on the experience in
different application domains for workflows and their
according requirements: office/administrative work-
flows (Minor et al., 2009a), chip design (Minor et al.,
2009b), scientific workflows (Minor and Görg, 2011),
cooking workflows (Walter et al., 2011), construction

workflows and personal/social workflows (Görg et al.,
2012). In the focus of the developed resource model
are no specific characteristics of these application do-
mains. It is a generic concept which we expect to be
applicable in all of these application domains.
In summary, the following general requirements for a
cloud-based WfMS have been observed in the above
mentioned application domains. Section 5.2 and 6 de-
scribe how the resource model fulfils these require-
ments.

1. Support for modeling of workflows.

2. Support for the execution of workflows including
human and automated tasks.

3. Support for collaborative workflow modeling and
sharing of resources.

As mentioned in the introduction, normal WfMS
are local information systems. Only few people in
an organization are committed to model and maintain
workflows. In such a case, some accounts for work-
flow modelers are sufficient. Employees, involved in
the execution of tasks, would just need a login to their
worklist in order to verify their identity. This corre-
sponds to the classical role distinction of the WfMC
between workflow modelers and workflow partici-
pants (Coalition, 1999). In a cloud-based WfMS this
clear role allocation is blured, because former work-
flow participants can be proactively involved in the
modeling of workflows enabled by the easy acces-
sibility of the technology. The postulated collabora-
tion and sharing requirement for a cloud-based WfMS
leads to the development of a resource model for col-
laboration and reuse.
Collaboration and reuse of workflows have been
found useful in all application domains which require
extensive and diverse expert knowledge. The sharing
feature (see section 6.1) is particularly important in
many domains.

3 CAKE THE CLOUD-BASED
WFMS

Based on the requirements of section 2 the resource
model has been developed as part of the Collaborative
Agile Knowledge Engine4 (CAKE) system. The fol-
lowing sections briefly describe workflows in CAKE
and parts of the system architecture.

4http://cake.wi2.uni-trier.de



3.1 Workflows in CAKE

CAKE is a prototypical generic software system
for integrated process and knowledge management.
CAKE integrates selected research results on agile
workflows5, case-based reasoning, and web technolo-
gies into a common platform that can be configured to
different application domains and needs. Agile work-
flow technology (Weber and Wild, 2004; Reichert and
Dadam, 1998) means that a workflow can be mod-
eled and changed on demand and that even a running
workflow can be paused and adapted to new require-
ments. Thus, agile workflow technology dissolves the
clear separation between the build- and runtime of a
workflow (Coalition, 1999).
In general, a workflow consists of tasks which are
linked by a control flow, and data objects which are
linked by a data flow (van Der Aalst et al., 2003).
The control flow consists of a sequence of tasks and
routing constructs. There are several routing con-
structs, and of these the parallel execution of se-
quences (AND-Split and AND-Join), the exclusive
choice of sequences (XOR-Split and XOR-Join) or
the multi-choice (OR-Split and OR-Join) are often
supported by WfMS. Tasks can be executed by hu-
mans or automatically by an invoked application. The
data flow consists of interlinked data objects. Data ob-
jects can be linked amongst others between tasks, be-
tween tasks and routing constructs, or between tasks
and sub-workflows.
During workflow enactment, tasks can be executed
by services (e.g. web services or specific implemen-
tations of automated tasks) or certain activities may
require human workflow participants (e.g. experts).
In Figure 1, a very simple workflow in Cake Flow

Figure 1: A simple workflow.

Cloud Notation (CFCN) (Minor et al., 2011) is il-
lustrated. CFCN is a workflow modeling language
which is derived from UML activity diagrams. We
think it will receive more acceptance by the users of
the CAKE system. This assumption is based on cur-
rent HCI research where ’enchantment’ is an impor-

5For more information on agile workflow technology
please refer to (Minor et al., 2008).

tant aspect and beauty is part of enchantment in us-
ing UIs (Wright et al., 2008). Furthermore many HCI
researchers state that the visual appeal influences fac-
tors as (perceived) reliability, usability, information
quality, trustworthiness and usefulness (Lindgaard
et al., 2011). In this simple example two subsequent
tasks are executed. The first task is delegated to an
employee. The employee will create a report and up-
load it to the workflow. When the data object ’Report-
2012.xlsx’ becomes available, the execution of the
preconfigured automated ’Encrypt and Send’ task is
triggered. This automated task may send the report to
a list of specified recipients.

3.2 System Architecture

In Figure 2, the overall CAKE system architecture is
illustrated. The server component consists of a stor-
age layer which handles persistency, an interface layer
for the communication with web applications and two
central engines, which are briefly described in the fol-
lowing.

Figure 2: The CAKE system architecture.

The workflow engine is used for the enactment of
workflows. Its internal architecture is strongly tied
to the reference architecture of the WfMC (Coalition,
1999). Thus, the workflow engine provides inter-
faces for modeling and execution of workflows (Agile
Workflow Execution), for invoking applications (Ser-
vice Connector), and an interface for the delegation of
tasks (Worklist Manager).
The knowledge engine supports process-oriented
case-based reasoning (Bergmann et al., 2006;
Bergmann and Gil, 2011; Madhusudan et al., 2004;



Chinthaka et al., 2009) and aims at intelligent meth-
ods for reusing experiential knowledge. It supports
similarity-based retrieval of workflows based on se-
mantic descriptions as well as the automatic adapta-
tion of workflows (Minor et al., 2010). The aim is to
support unexperienced workflow modelers with gath-
ered and structured knowledge in a database. This
experiential knowledge can then be discovered and
reused in order to build or to improve a workflow un-
der construction. The reuse of procedural knowledge
is closely linked to the possibility to share and spread
workflows. Though a detailed description of this sce-
nario would go beyond the extent of this paper6.
The interface layer provides communication means
which encapsulate the functions of the two engines
and it enables the development of complex web ap-
plications such as a workflow modeling and execution
environment.
The proposed resource model for collaboration and
reuse has been integrated by an access control mech-
anism in the storage layer. This layer has to ensure
that any stored resource (a workflow, a task, and any
further resources) is accessible and possesses a clear
ownership. From an abstract point of view the access
control mechanism is a decentralized Discretionary
Access Control (dDAC) (Downs et al., 1985) with
subject-object relationships specified in Access Con-
trol Lists (ACLs). From a detailed point of view it is
a workflow specific access control concept which ful-
fils the given requirements of section 2 with a set of
default access rules to ensure operation (see section
5). By decentralized we mean that an user can trans-
fer access rights to another subject. The basic idea
is that every resource in the system has a dedicated
owner who is allowed to manage the access rights for
the resource.

4 THE ACCESS CONTROL
MECHANISM

In the following section, the access control mecha-
nism is described. It starts with the resource model in
general. Then, the access control mechanism for re-
sources is described. Afterwards logical structures are
introduced which facilitate an efficient control over
resources and ensure an easier usage of the system.

6For more information please refer to (Görg et al., 2012;
Bergmann et al., 2006).

4.1 The Resource Model

The resource model is illustrated in the UML class
diagram of Figure 3. Everything in the CAKE sys-
tem is considered as a Resource and the access con-
trol mechanism aims at specifying the access rights
for each resource. A resource has exactly one owner.
Participants are resources as well, and hence we
need to avoid that an Object, e.g. a task or a data
object, gets access rights to a participant. The sub-
classes of participant are Account and Participant
Group, which is a group of an arbitrary set of ac-
counts. Accounts have a unique identifier. The re-
source model does not prohibit that a participant can
get access rights to another participant. As a conse-
quence, a participant can have or give access rights to
another participant. For instance the membership of
an account in a participant group does not necessarily
mean that the person who is a member may see the
members of the participant group. Only if the person
has also got the right to read the content of the partic-
ipant group the group members become visible to the
person.
For the retrieval of resources the enrichment with se-
mantic information is a means to simplify and im-
prove the discovery of resources. The Semantic Meta
Data can be realized via Ontologies which should be
specified in a public standard format such as OWL to
enable inference mechanisms.
The left four main types of resources are the Adap-
tation Case (for case-based automatic adaptation of
workflows (Minor et al., 2010)), Data, Workflow
and Task. Due to the nature of workflow manage-
ment systems, tasks are connected with participants
by a specified Execution. In the reference model of
the WfMC it is the role of the Worklist which con-
trols the Human Execution and task delegation. The
Assignment differentiates between allowed and as-
signed participants. The modeler may define several
allowed participants to execute a task, but only one
participant can be assigned in the end. If a partici-
pant group is allowed to execute a task, each member
may be asked to execute the task but no one is as-
signed. A participant group can be a set of colleagues
or experts who fulfil a predefined role in an organiza-
tion. Besides the human execution, we also support
automated tasks, which can be executed without user
interaction. For these tasks, the Service Execution is
responsible. Automated tasks which use the service
execution are custom software components. The au-
tomatic sending of an e-mail or the retrieval of data
from a database are examples for this.
A concrete workflow consists of a control flow with
tasks and data objects linked with tasks. Before



Figure 3: The resource model.

the specializations of the data, workflow and task
classes will be explained (see section 5.2), the terms
of instance and prototype are defined. These defini-
tions are a generalization of the common workflow-
schema/instance separation in WfMS to fit to any re-
source of the resource model.

• A Prototype is a template which cannot be ex-
ecuted. We have prototypes for workflow, task,
and data items. We distinguish between system
prototypes and derived prototypes. System proto-
types are reusable entities. The usage of a system
prototype leads to a derived prototype. A derived
prototype is configurable and editable.

• An Instance is a copy of a derived prototype. The
instantiation creates an executable copy of a de-
rived workflow prototype. Only instances can be
executed. Hence, we have instances for workflow,
task and data items.

The reasons for the restrictions on derived prototypes
as well as the reason why only instances may be used
for execution are explained later on in section 5.3.
The common workflow artifacts (tasks and data) and
their workflow environment are described in more de-
tail in section 5.2 together with some default access
rights, which are needed to meet the requirements of
section 2.
The last unexplained part of the diagram shows the
Resource Group. There are two reasons why it is

different from the participant group. The first reason
is the durability of the group members. If a resource
group is deleted, all of its members should also van-
ish, because they are no longer needed. A group of
participants needs another behavior. The deletion of
a participant group may never entail the deletion of
its group members, i.e. the accounts. The second
reason is the need to give a hierarchical structure to
resources. In contrast to the participant group, the re-
source group should be able to form tree structures.
Objects might be grouped by participants in order to
organize and share personal libraries of resources. For
instance, a new secretary shall see all administrative
workflows for a certain division of a company. Then,
the secretary only needs the read right to the folder
where these workflows are.

4.2 Access Control Mechanism

Access Rights are defined between participants and
resources. Thus, a set of people (participant group)
or a single person (account) can get access rights to
an object resource. This also means that every person
can control his/her visibility to the public by restrict-
ing read rights about himself to a certain person or a
group of persons. Access rights regulate three kinds
of access: read, write, and execute. The access to a
resource is managed by the access rights, but the ac-
cess rights can only be assigned by the owner. The



resource model only regards positive access rights. It
is not possible to explicitly deny a right. Hence, in-
consistent access rights due to the membership of par-
ticipants in different participant groups cannot occur.
The access rights that a single account possesses, is
a union of all access rights for this account and all
participant groups in which the account has a mem-
bership. On certain resources, not all access rights are
applicable. For instance the execute right is only ap-
plicable to workflow instances, but not to individual
task or data items.

4.3 Logical Structures

Before the access rights and their default application
are described in more detail, some logical structures
are explained. These logical structures are based on
the resource group and facilitate the organization of
owned resources as well as rights management. Fur-
thermore, the logical structures are a means to de-
velop useful and coherent user interfaces. In this sec-
tion we describe how logical structures are used to
ensure the ownership over resources.
In Figure 4, a Workspace is illustrated. It is a logical
structure which is intended to accommodate an arbi-
trary set of other logical structures. The workspace is
the root for all owned resources of an account. Every
account has at least one workspace. The workspace
has exactly one owner. All subgroups and their group
members, i.e. object resources, get their inherited
ownership by the workspace owner. A workflow may
only be started if it is part of a subgroup within a
workspace and a person has the right to execute it.
This ensures that there is always at least one respon-
sible person for its execution, even if the executor is
not the owner. To organize resources in a workspace,

Figure 4: The Workspace - A logical structure.

different logical tree structures can be mounted in the
workspace. Mounted means that the workspace re-
source group gets new members which are also re-
source groups.

5 APPLICATION OF ACCESS
RIGHTS

This section is about access rights and their default
application in the context of workflows and resources
in general, based on the requirements in section 2.
First, the term of ownership is explained and how it is
related to a workspace. Then, default access rights to
resources are described from different views in order
to give a recommendation for a cloud-based WfMS.
In the end, the instantiation of derived prototypes is
explained in more detail.

5.1 Ownership

Access rights can only be assigned or removed by the
resource owner. Ownership can only be taken by a
single account. According to the workspace structure
all resources in a workspace have the same owner.
The concept of access rights could also allow to trans-
fer the ownership of a resource to another participant
or group of participants, but this will not be supported
for the following reasons.
If there is a workflow on which several people collab-
oratively work, it is not intended that a user can lose
the ability to read, write, or execute his/her formerly
owned workflow, because someone else has taken the
ownership. In such a case, the owner of the logical
structure in which the workflow lies would differ from
the workflow owner and this would violate the con-
cept of the workspace. Also non-executable resource
objects, such as data (documents), must meet this re-
quirement of the workspace. If a transfer of owner-
ship would be allowed it would cause a resource to
switch the workspace.
If the ownership of a resource could be taken by a par-
ticipant group, then it would be possible that an empty
group is the owner of an already running workflow in-
stance, which would also lead to the consequence that
no one is responsible for the execution of the work-
flow and its monitoring. Therefore, only accounts
may have a workspace.

5.2 Default Access Rights

After the explanation of the resource model, the ac-
cess control mechanism in general and its derived log-
ical structures, the data, tasks, and their workflow en-
vironment are described by the terms of prototypes
and instances.

Data within a workflow can consist of documents,
files, or primitive types such as integer or string val-
ues. Their system prototypes can be stored in a doc-
ument management system which uses versioning to



provide the proper release of data objects. By using
a data system prototype in the context of a derived
workflow prototype / workflow instance, it becomes a
derived data prototype / data instance.

Tasks within a workflow can either be automated
tasks, which are executed without user interaction or
human tasks which needs to be executed by a person.
Their system prototypes are specified descriptions of
concrete implementations or web-services. By insert-
ing a task system prototype into the control flow of
a derived workflow prototype / workflow instance it
becomes a derived task prototype / task instance.

Workflows combine tasks by control flow struc-
tures and data objects with tasks by data links (van
Der Aalst et al., 2003). The system prototype of a
workflow is not comparable with the ones for data
objects or tasks. For workflows, only one type of sys-
tem prototype exists. It is an empty container which is
able to accommodate data objects and tasks in order to
link these to form a logical sequence of activities. By
modeling the control flow, it automatically becomes a
derived prototype. If we talk of workflow prototypes,
it is indeed a derived workflow prototype already.7

An operational cloud-based WfMS would need
much time to check the access to every resource or
even more granular for every attribute of a resource.
For this reason this section explains where particular
access rights are necessary, considering the modeling
and the execution of workflows. The first scenario
is described from the perspective of a workflow
modeler. Table 1 is a sample instance of the table
’Access Rights’ in Figure 3 and explains which rights
have to be assigned explicitly. The second scenario
is described from the view of a workflow participant
who receives a delegated task. It explains why some
rights have to be set implicitly for the ’Assignment’
of the ’Human Execution’ (see Figure 3).

Table 1: Access rights during workflow modeling.

read write execute
System data prototypes x
System task prototypes x
(Derived) workf. proto. x x
Workflow instances x x x

Modeling of workflows Table 1 shows the access
rights which are relevant for workflow modeling.
Read rights to system data and task prototypes are re-
quired in order to see available data items and tasks

7A derived workflow prototype is equivalent to the
common term of a workflow schema/template/definition in
WfMS.

which the workflow modeler can use to create the new
workflow, i.e. a derived workflow prototype. Hence,
read access to these items enable to control which
items are available to a certain user for modeling a
workflow. These rights may, for example, be specific
to a certain participant group. In order to edit the new
workflow, the user needs the read and write right to
the respective derived workflow prototype being mod-
eled, as the main purpose of modeling is writing a
new workflow. These rights are automatically passed
to all derived data and task prototypes created as part
of this workflow. Hence, a certain right to a derived
workflow prototype implies the same right to all of
its components. Consequently, there is no need to ex-
plicitly specify individual rights for derived data and
task prototypes. This simplifies the rights manage-
ment and avoids incomplete access to a workflow.
Once the workflow prototype is completely modeled,
the user has to create a workflow instance as only
the workflow instance is executable. In order to actu-
ally execute the created instance, the execute right is
necessary. The additional write right for the instance
specified in the table entitles the user also to modify
the executed workflow after it has been started. As
for derived workflow prototypes, the access rights for
workflow instances are also passed implicitly to the
task and data instances. Hence, there is also no need
to explicitly specify individual rights for data and task
instances.

Execution of human tasks Human task instances
are used for the delegation of tasks to participants
by the human execution and the specified assignment.
Thus the description of tasks must be readable for the
assigned or allowed participants as well as provided
input data and the ability to write output data. So the
assignment of the human execution implies the access
rights for task and data instances. Task instances are
limited to a read right, because their content and their
structure within the control flow is not influenced by
the person who is assigned to a human task. Dur-
ing delegation, the task instance will always be in the
same position in the control flow and all incoming and
outgoing data links will remain unaltered. Data in-
stances need an additional write access for assigned
persons if the assigned person has to change a data
object or if the creation of a new data object is re-
quired for fulfilling the task (see first task in Figure
1).

5.3 Instantiation of Derived Prototypes

A participant needs a read right to a workflow pro-
totype in order to create a workflow instance. The



owner of the workflow instance is the person who en-
gaged the instantiation process and thereby the work-
flow instance is part of the workspace of that person.
The resource model allows to instantiate all work-
flow prototypes which are readable for a participant.
This is useful if a workflow needs to be executed only
one time for a participant and the participant used a
workflow prototype from a public repository of work-
flows. If the participant needs to adapt the workflow
instance to his/her needs, the agile workflow technol-
ogy (see section 3.1) of the CAKE WfMS even allows
to change a running workflow instance.
Alternatively, the participant can copy the workflow
prototype into his/her own workspace before the in-
stance is created and the workflow is started. The
copied workflow prototype is then owned by the par-
ticipant and thereby she/he also receives read and
right access rights to the workflow prototype. This
enables him/her to adapt the workflow to his/her par-
ticular needs, which is useful in cases multiple equiv-
alent instances of this workflow prototype have to be
executed.

6 COLLABORATION AND
SHARING

In this section, the processes of sharing resources and
the collaborative workflow modeling are briefly de-
scribed. Afterwards a general issue on copying work-
flows is discussed in the context of collaboration and
sharing.

6.1 Sharing of Resources

Sharing of resources is the reuse of resources by other
participants. This means that not only a read right
is passed from one participant to another participant
but that a resource is copied from one workspace to
another. Every resource which is copied this way is
recorded in a table which is part of the access control
mechanism. This sharing table can be seen as a his-
tory for resources and their provenance in a network
of participants. Especially, sharing of workflows is of
interest because they contain much procedural knowl-
edge. The sharing table (see bottom of Figure 7)
allows tracing the provenance of workflows. This
serves several purposes. First, in case that workflows
contain illegal data or an user misuses the system, it
allows us to deactivate all undesired resources and
their copied derivations in the cloud-based WfMS.
Second, in the scenario of personal/social workflows
(Görg et al., 2012) people can see if their workflows
are reused. Socializing, besides communication, is

the most important motivational factor for using so-
cial network sites (Brandtzæg and Heim, 2009) and
approval and feedback of other people are part of so-
cializing. The opportunity to see who is not only read-
ing my work but also reusing it, is known as feedback
mechanism (Bellotti and Sellen, 1993). This mech-
anism leverages the access control model to a more
transparent model in which a user not only knows to
whom resources are passed, but also who is reusing
the resources.
In the following the process of sharing a workflow
prototype is shown in an example, in which user A
wants to share a workflow prototype with user B.

In Figure 5, user A has a workflow prototype in a

Figure 5: Sharing a workflow prototype - part I.

Figure 6: Sharing a workflow prototype - part II.

folder of his/her workspace. Only User A has read
and write access to the folder and to the workflow pro-
totype. User B cannot see anything else than his/her
own workspace. In Figure 6, user A has given the
read right for the workflow prototype and its parent
folder to User B. For User B the readable folder and
the workflow appear in a space for readable resources.
In Figure 7, user B decides to reuse the workflow pro-
totype. Therefore it needs to be copied in his/her own
workspace. A new workflow prototype is created,
which is owned by User B and which is not visible



Figure 7: Sharing a workflow prototype - part III.

for User A. User A gets feedback about this through
access to the provenance information.

6.2 Collaborative Workflow Modeling

The access control mechanism allows collaboration
on different levels. Not only workflows can be edited
collaboratively but also all logical structures which
are based on the resource group. So an owner can give
write access to a folder to different participants. Then,
each of these participants must also get the write right
to all workflows which are organized below the con-
cerned logical structure. If such a write-released re-
source is modified by inserting a new resource, the
access rights must also be assigned to the owner of
the parent structure and all participants which have
write rights to the parent structure.

Figure 8: A collaboration example.

Figure 8 shows an example for collaboration. The
workspace owner, User A, has granted User B read
and write rights to ’Folder 1’. Thus, User B has read
and write access to all resources within this folder, i.e.
’workflow prototype 1’. User B may create ’work-
flow prototype 2’ in ’Folder 1’ because she/he has a
write right. User B is not the owner of the new work-
flow prototype but she/he has the inherited rights of
’Folder 1’ to the new workflow. Then, both users can
collaboratively model ’workflow prototype 2’.

6.3 Issues on Copying Workflows

The invitation of participants for a desired collabora-
tion on the design of a workflow and the process of
sharing a workflow are quite similar processes up to
the point where a new workflow prototype is created.
In both situations at least a read right to the workflow
is granted to another participant. This read right is
the authorization to see all data and tasks in the work-
flow. However, because of the possible connection of
human tasks with participants through the execution
assignment, the visibility of allowed or assigned par-
ticipants must be restricted. This problem is similar
to information leakage in Service Oriented Architec-
tures and Cloud-Services. The resource model can
handle this issue, because there is a access right re-
lationship between participants (see Figure 3). If a
workflow is readable for other participants the assign-
ment on human tasks is only visible for them if there
is an explicit read right between these participants and
the participants in the assignment.

7 DISCUSSION

Due to the extent of this paper, some issues of the re-
source model and the access control mechanism can-
not be discussed: The modeling and access of hierar-
chical workflows and the reuse of workflow instances
requires a version management for the produced data
during the runtime, especially in the context of ag-
ile workflows (Minor et al., 2008). Of course, col-
laborative workflow modeling also requires a lock-
mechanism to avoid read-write conflicts.
The access control mechanism described in the paper
is fully implemented in the CAKE system; an appro-
priate graphical user interface that enables to assign
rights to resources in the manner described is cur-
rently under development. Future work will partic-
ularly include an empirical evaluation of the CAKE
cloud-based workflow management system, including
the sharing and collaboration features.
The problem of access control and security issues is



also widely known in the field of SOA. The access
control mechanism in this work is based on the iden-
tity of a user and in a first step it cannot meet the
requirements to fulfil Service Level Agreements, a
trustworthy service invocation or can guarantee auto-
matically compliance to public or internal policy re-
quirements. Though, the field of SOA has a bigger
scope. Inter-organizational processes and heteroge-
neous IT-infrastructures are not yet in the focus of the
CAKE system.

ACKNOWLEDGEMENTS

This work is part of the WEDA project. WEDA is
funded by Stiftung Rheinland-Pfalz für Innovation,
grant no. 974.

REFERENCES

Bellotti, V. and Sellen, A. (1993). Design for privacy
in ubiquitous computing environments. In ECSCW,
pages 75–.

Bergmann, R., Fremann, A., Maximini, K., Maximini, R.,
and Sauer, T. (2006). Case-based support for collabo-
rative business. In Roth-Berghofer, T., Göker, M. H.,
and Güvenir, H. A., editors, Advances in Case-Based
Reasoning, 8th European Conference, ECCBR 2006,
Fethiye, Turkey, September 4-7, 2006, Proceedings,
volume 4106 of LNCS, pages 519–533. Springer.

Bergmann, R. and Gil, Y. (2011). Retrieval of semantic
workfows with knowledge intensive similarity mea-
sures. In Case-Based Reasoning. Research and De-
velopment, 19th International Conference on Case-
Based Reasoning, ICCBR 2011, volume 6880 of
LNCS, pages 17—31. Springer.

Brandtzæg, P. and Heim, J. (2009). Why people use so-
cial networking sites. Online Communities and Social
Computing, pages 143–152.

Chinthaka, E., Ekanayake, J., Leake, D., and Plale, B.
(2009). Cbr based workflow composition assistant.
In Services - I, 2009 World Conference on, pages 352
–355.

Coalition, W. M. (1999). Terminology and glos-
sary. http://www.wfmc.org/standards/docs/
TC-1011_term_glossary_v3.pdf. [Online; ac-
cessed 14-Nov-2012].

Downs, D., Rub, J., Kung, K., and Jordan, C. (1985). Issues
in discretionary access control.

Görg, S., Bergmann, R., Minor, M., Gessinger, S., and
Islam, S. (2012). Collecting, reusing and executing
private workflows on social network platforms. In
WWW’12 Workshop Proceedings.

Lindgaard, G., Dudek, C., Sen, D., Sumegi, L., and Noo-
nan, P. (2011). An exploration of relations between vi-
sual appeal, trustworthiness and perceived usability of

homepages. ACM Transactions on Computer-Human
Interaction (TOCHI), 18(1):1.

Liu, X., Yuan, D., Zhang, G., Li, W., Cao, D., He, Q., Chen,
J., and Yang, Y. (2011). The Design of Cloud Work-
flow Systems. SpringerBriefs in Computer Science.
Springer.

Madhusudan, T., Zhao, J., and Marshall, B. (2004). A case-
based reasoning framework for workflow model man-
agement. Data and Knowledge Engineering, 50(1):87
– 115. Advances in business process management.

Minor, M., Bergmann, R., and Görg, S. (2011). Adaptive
workflow management in the cloud - towards a novel
platform as a service. In Proceedings of the ICCBR
2011 Workshops, pages 131—138.

Minor, M., Bergmann, R., Görg, S., and Walter, K. (2010).
Towards case-based adaptation of workflows. In
Montani, S. and Bichindaritz, I., editors, Case-Based
Reasoning. Research and Development, 18th Interna-
tional Conference on Case-Based Reasoning, ICCBR
2010, Alessandria, Italy, July 19-22, 2010. Proceed-
ings, LNAI 6176, pages 421–435. Springer.

Minor, M. and Görg, S. (2011). Acquiring adaptation cases
for scientific workflows. In Case-Based Reasoning.
Research and Development, 19th International Con-
ference on Case-Based Reasoning, ICCBR 2011, vol-
ume 6880 of LNCS, pages 166–180. Springer.

Minor, M., Schmalen, D., Kempin, S., and Kempin, S.
(2009a). Demonstration of the agile workflow man-
agement system cake ii based on long-term office
workflows. In BPM (Demos).

Minor, M., Schmalen, D., and Koldehoff, A. (2009b). Fall-
studie zum einsatz agiler, prozessorientierter metho-
den in der chipindustrie. In Hansen, H. R., Kara-
giannis, D., and Fill, H.-G., editors, Business Ser-
vices: Konzepte, Technologien, Anwendungen, 9. In-
ternationale Tagung Wirtschaftsinformatik, 25. - 27.
Februar 2009, Wien, volume 1, pages 193 – 201.
Oesterreichische Computer Gesellschaft.

Minor, M., Tartakovski, A., Schmalen, D., and Bergmann,
R. (2008). Agile workflow technology and case-
based change reuse for long-term processes. Inter-
national Journal of Intelligent Information Technolo-
gies, 4(1):80–98.

Reichert, M. and Dadam, P. (1998). Adept flexsupporting
dynamic changes of workflows without losing control.
Journal of Intelligent Information Systems, 10(2):93–
129.

van Der Aalst, W., Ter Hofstede, A., Kiepuszewski, B., and
Barros, A. (2003). Workflow patterns. Distributed and
parallel databases, 14(1):5–51.

Walter, K., Minor, M., and Bergmann, R. (2011). Workflow
extraction from cooking recipes. In Diaz-Agudo, B.
and Cordier, A., editors, Proceedings of the ICCBR
2011 Workshops, pages 207–216.

Weber, B. and Wild, W. (2004). An agile approach to
workflow management. Proceedings of Modellierung
2004, pages 187–201.

Wright, P., Wallace, J., and McCarthy, J. (2008). Aesthetics
and experience-centered design. ACM Transactions
on Computer-Human Interaction (TOCHI), 15(4):18.


