Inverse Workflows for Supporting
Agile Business Process Management

Thomas Sauer Mirjam Minor and Ralph Bergmann

rjm business solutions GmbH University of Trier

68623 Lampertheim, Germany Department of Business Information Systems |l
t.sauer@rjm.de 54286 Trier, Germany

{minor,bergmanp@uni-trier.de

Abstract: Agile processes allow organizations to flexibly react on aed unforeseen
situations. However, modifications must adhere to the statsdand quality require-
ments given by an organization. In this paper, the conceptvafrse workflowss
presented to support organizations in meeting this goalerse workflows provide
a means to explicitly express unwanted procedures and vitloiktisns. In conjunc-
tion with an automated system to detect inverse workflow temaict, organizations
can prevent undesired developments while they are emerdgimng effectively allows
controlling overall process quality while modeling or atlag business process to
stakeholder demand.

1 Introduction

Workflow management has been found useful in many orgaaizafor controlling and
improving the quality of the goods produced and the servidesed. To this end, work-
flows automate business processes for reducing wait tinnéding human process partic-
ipants, or providing resources as required. However, dzgéions face the challenge that
processes have to be quickly adapted to reflect new requitsraeshifting customer pri-
orities. To accommodate new customer demands, new taskbawayto be incorporated,
or new connections between already known tasks need to badiehis leaves the risk
that task sequences emerge which have been learned to bihiarthe past, or which
may lead to sub-standard results.

In this paper, the concept afiverse workflowss presented to lower this risk. Inverse
workflows consist of avorkflow definitionproviding a process template which describes
an unwanted procedure. This goes beyond exceptions [RWIAB] such as a work item
failure, a deadline expiration, or a constraint violatigkela hurt credit limit. For ex-
ample, an unwanted procedure may describe a sequence sithgth will lead to data
loss when enacted. If a procedure becomes unwanted only spdeific circumstances,
e.g., if a product develops qualities known as problematierse workflows include re-
spective workflow enactment characterizations. Theseackenizations express undesired
data or task states which may result from executing the lyidgrworkflow definition.

To provide a warning as soon as the work situations desciilyeah inverse workflow

emerges, th€rogress Information Environment (PIEyaul0] is used. PIE providesi-
tomated workflow enactment trackinghich evaluates the data produced by organization
members while they are carrying out activities, and idesdithe state of the latter along
an ideal process model. In particular, this is applicablenterse workflows, such that
undesirable developments can be spotted and correctedhirely thanner.

Inverse workflows follow the notion dfiverse requirementsnown from Software Engi-
neering [LDO3]. Inverse requirements explicitly specifpperties a system is not intended
to have, in order to clarify system behavior. Inverse workfi@lso borrow on the idea of
specifying nonfunctional safety and security requireragmwhich describe hazards a soft-
ware system must not expose [VL10]. In workflow managemeregcifying unwanted
work situations has been addressed so far by specifigriidden behaviofSMO06] or
anti-patterns[TSvdAQ9]. Inverse workflows exceed these approaches byigirg an
intuitive concept which can be employed regardless of tlvegss description language
or modeling environment preferred by an organization. @/hpplicable to any workflow
management strategy, the concept of inverse workflows hesfband most useful in agile
scenarios, where workflow definitions are frequently changehe concept is evaluated
in the field of geographical information management [SMMBO®his includes tradi-
tional workflow management strategies, but also agile omasre workflow definitions
are frequently changed.

The paper is organized as follows. In Section 2, foundattwagpresented for expressing
domain-independent workflow definition and enactment. i8e@ discusses how this is
applied for describing inverse workflows. Related work scdssed in Section 5. A short
conclusion given in Section 6 closes this paper.

2 Workflow Definition and Enactment

Inverse workflows can be described in any process desaripdioguage which allows
expressing self-contained tasks and their interdepemegrstich as EPC, UML Activity
Diagrams, or BPMN. For formally describing the building ks of an inverse workflow
independent of a specific description language, in thevatig the light-weight model of
abstract workflow definition and enactment introduced irufl®j is used. In this model,
any process followed by an organization is described Wwpkflow definitiorcomprising
a set oftasksand their control-flow relationship. Each task representadivity that can
be performed by a human or a machine. Tasks may range froritelior decisions such
as selecting between two alternatives, to more complexities such as writing a report.
Specialized trigger tasks may even launch entire procdssssd on another workflow
definition, similar to calling a subroutine in a programmiagguage.

Carrying out a workflow definition leads tworkflow enactmentThe concrete efforts in
enacting the workflow definition formwaorkflow instancer simply aworkflow The tasks
are performed as previously arranged, with their findingsessed adata objectsEach
task traverses three states “inactive”, “active”, and “pteted”, which are all character-
ized by the data available. While a task has not produced atayabjects yet, it remains

RS

(inactive, 1) .- completed 0) .~ (actlve 0) (hr

66‘

Figure 1: Instantiation and enactment of a workflow definitio

in state “inactive”. After intermediate data objects haweei created, but control flow
has not been passed to successor tasks, the task beconies’‘atfith the final results
produced, and control flow passed to successor tasks, a¢asknes “completed”. Af-
ter completing a task, its successors may use the data shjeaitable to produce further
workflow results. As workflow definitions may contain loop stmucts, a task can traverse
each task state more than once. The work situation reachaddsk is fully represented
by atask enactment characterizatiofihis characterization is a trip{g”, [, ») comprising

a combination of the data availabl® the applicable task state labeland a number of
repetitions-.

In Figure 1, a workflow definition and its enactment is illaséd based on the modeling
language introduced in [MTSBO08]. A workflow definition costiing of three tasks, to,
andts arranged in a loop is enacted. Taskhas been performed before, with its results
represented by data objetit. As taskt; is already available for another iteration, its task
state is specified as “inactive”. The number of repetitionsmgbyr = 1 indicates that;
has been fully completed one time before. Using data okjedaskts has been recently
completed. The task created an additional data objgcand the task statg is “com-
pleted”. The value = 0 represents that there have been no previous completiamaslyi
taskts has been started, using the data objects created previdasliyts has produced
intermediate resulis, leading to the sef’ = {d;, d», d3} of currently available data ob-
jects. Taskis has not passed control flow yet, such that it is describedv&ictSince it
has not been completed before, it hotds 0. For each task, the work situation reached is
specified by a task enactment characterization compribimget of data objects currently
availableC, the task state, and the number of repetitions performedeXample, the task
enactment characterization foris given by({d;, d2, ds }, active 0).

The combination of these task enactment characterizataws to avorkflow enactment

characterization describing a “snapshot” of the workflow enactment perfairae far.

It lists the task enactment characterization triples fahe@msk contained in a workflow
definition. Accordingly, the overall work situation illusted in Figure 1 is described as
{(t1,{dy,d2,ds},inactive 1), (t2, {d1, do, d3}, completed0), (s, {d1, d2, ds}, active 0)}.

3 Specifying Inverse Workflows

Workflow definitions aim at the automation of business preess These processes typi-
cally describe how to produce goods or how to provide a seragintended by an orga-

CAD data Connect Copy
® ,[conversion > features] » data >®

(a) Data loss: Every enactment of this workflow definitionl tgad to data loss.

Print overview s
0
A 4

(active, 10)

map1 : Hardcopy

municipality = “A3”
name = “Overview”
creator = ?

(b) Waste of resources: In the characterized work situatiarunnecessary amount of paper is produced.

Figure 2: Inverse workflow examples

nization, such that workflow definitions often representistedted best practices. During
everyday operations, adaptation of these practices isstlimevitable. Ever-changing cus-
tomer demand typically requires an organization to evohe extend existing workflow
definitions, or to introduce entirely new ones. However, tiedifications applied may
also lead to unintentional results, accidentally inteégogprocedures known as inefficient,
error-prone or even dangerous into the workflow definitiailofved by an organization.
In result, sub-standard products are created, or subdptisiasequences are enacted.

Organizations can explicitly describe unwanted proceslaheady known by specifying
inverse workflows Each inverse workflow consists of a workflow definition, andea
of workflow enactment characterizations. The workflow dé&bni describes a procedure
which is known as ineffective, expansive, or even harmfatause, e.g., efforts are du-
plicated or safety measures are violated. The workflow emact characterizations de-
scribe concrete work situations which have led to data ¢bjeith one or more undesired
qualities, such as a report document referencing to an mdaddandard. Alternatively,
the workflow enactment characterizations may document otesiaask states or repeti-
tion counts, like an excessive amount of repetitions peréat for a specific task. If the
workflow definition providing the basis for the inverse wodkfl unconditionally leads to
unwanted effects, workflow enactment characterizationstmesomitted.

In Figure 2, two typical inverse workflows are presented aseoled within the field of
geographical information management. In the first, a tagkeece is depicted which is
known to lead to data loss. The task “CAD data conversionate® database records
which would be removed by the subsequent “Connect featuees! conveyed to a pro-
duction system by “Copy data”. This sequence is to be untiomaily avoided, such that
no workflow enactment characterizations are specified.drséitond example, an inverse
workflow describes potential waste of resources. When thle ‘farint overview map”
results in a relatively small hardcopy of size A3, the regibinterest may not have been
properly selected, as a typical hardcopy is at least of seearger. If in addition, the

task “Print detail map” is performed more than ten times iow, ilan unnecessary amount
of paper is produced.

Inverse workflows complementing desired workflow definitiors. Inverse workflows
can refer to situations which are not covered by desired fimmidefinitions. For example,
the first inverse workflow shown in Figure 2(a) is not covergdabpy other workflow
definition. Thus, the task sequence expressed can only bleaad workflow definitions
are adapted accordingly, e.g., by a novice workflow mod&gmodeling the unwanted
sequence explicitly, the changed workflow definition can becked whether unwanted
aspects have emerged, which is discussed below in detast dkdreme, an organization
may only state inverse workflows, implicitly allowing all other wdlbws. This can be
useful in highly dynamic or agile scenarios, when it is ontyplkn what is not wanted, and
desirable procedures still have to be developed.

Inverse workflows as corner-caseslnverse workflows may also overlap with other, de-
sired workflow definitions. In this case, the situation disemt can be reached by following
another workflow definition, but only on rare occasion. Theeise workflow illustrated
in Figure 2(b) exhibits an example. The sequence of taskstifited is contained as-is
within another workflow, but the workflow enactment chareetgion specify undesirable
corner cases. This can be useful to avoid a large number ef diainctions through
XOR-elements or similar, leading to simplified workflow défioms which are easier to
understand. In extreme, all case distinctions would be mhéwénverse workflows, mak-
ing them complementary as stated above.

4 Detecting Inverse Workflow Enactment

By specifying inverse workflows, organizations expliciflycument unwanted procedures,
which, ideally, are never enacted. However, when workfloapaation is possible, this
cannot be guaranteed. In order to prevent squanderingairess, sub-standard products
and services, or even dangerous situations, organizatioiss be warned whenever in-
verse workflows are enacted. This can be accomplished by ths#Progress Information
Environment (PIE) [SMWO08, Saul0].

PIE is a Multi-Agent System (MAS, [Wei00]) designed for piding automated workflow
enactment tracking. The PIE system evaluates the data@eddiy workflow participants
while carrying out their everyday activities, and idensfitne work progress achieved
along previously defined workflow definitions. In particyldnis allows detecting enact-
ment of inverse workflows. PIE employs four different typésoftware agents, which
are arranged on respective layers. The overall systemeesid a base layer comprising
the information systems deployed, e.g., databases or derdumpositories. On a layer
above sensor agentsonnect to these systems, transforming the data createtdaditied
into more general data objects for further evaluation. @mibxt layertask agentsissess
whether the data objects found indicate actual task reshgop,instance agentdeter-
mine the workflow instances the task results possibly beton@he topmost layer hosts
workflow agentproviding a consistent view on the work progress achievet vaspect

5 PIE Crust =]

Workflow Instance Task Window Help

[B& Workfow Definitions 4% 1. Rheingau-Te :Case Study 1 oo E B
& Case Study 1)
’ - step: |
0 Transcribe
9
HE Transtrine Waldems
4
ranatiE e Transcribe Transcriie Minzenber
9
2 .—PH il J R Transcriae Ob
?+45 Setup CAD project 7 Transtribe Idstein
4% 1. Rheingau-Taunus-Kreisdstein

3% 2. Rheingau-Taunus-KreisiValdems
4% Support Current Research
*45 Support Research Tor District Bergstrate
o5 Transcrive Bergstrane
% B3 Transcribe Printed Publication

Transcribe Aarbergen Transcrioe F/
3

{8

o Lnsnga +% 2. Rheingau-Taunus-KreisWaldems : Transcribe Printed Publication 77/ 2 i s s i o i |
%2 Rneingau-
Step: ||
S T = 0) 4>H Set up CAD project]}—b{[Geocode monuments]}—)
Workflow | Task | WrEnact | Task Enact | 1
[@ Quan WERZEnt 7 2| Set up issue tracking Resolve issues
® sir - Boolean =false 3 e GAD data
¢ {} workflowEnactment : WorkflowEnaciment/ = 4 Enter Denki records
¢ @ cualifiedTaskEnactment = 0 o I »f
® simulated: Boolean=false
¢ @ task Task
® name : Stiing ="LOOP_STAR]|
® displayName: String = "LOOP, il 1 [[}]
® state: TaskState = "inactive’ o o o = = = = I
® context Vo *§2 1. Rneingau-Taunus-Kreisiidstein : Transcribe Printed Publication = M
® repeitions - Integer = 0 S q
¢ 4 QualifiedTaskEnactment i =K
® simuiated: Boolsan =false 9! 4>H Setup CAD project]}—b{[Geoeode monuments]}—)
9 @ task Task 10
® name: String ="LOOP_END 1 Setup issue tracking Resulve issues
® displayName : String = "LOOP, 2 o> CAD data
® state: TaskState ="inactive |
bl 13 Enter Denk records
© repetions :Integer = 0 14] ' »
¢ @ QualifiedTaskEnactment 15
® simuiated: Boolean = tiue B 16
Kl 1L I LLdE2 %) ! | [

Figure 3: The PIE system displaying current workflow enacime

to the workflow definitions used. Figure 3 shows a screendhaiich view presented by
the PIE system.

Sensor agents transform content specific to a particularrimtion system into concepts
understood by agents on the task, instance, and workflowdaler example, when a team
member enacts the task “Print overview map” as shown in Ei@(ip), information about
the hardcopy is stored within a print server log file. An adng sensor agent transforms
the log entries into a data object of type “Hardcopy” to cletedze task results.

Task agents applgase-Based Reasonifi@BR) [BAM+09] to evaluate the data objects
provided by sensor agents. To this end, task agents comipargata objects received
with those contained in task enactment characterizations/k from past enactment ef-
forts. Each of these characterizations servestaslaenactment casghich correlates a
known set of data objects with a concrete task state labehamrgbplicable number of task
repetitions. The set of task enactment cases availableaskaagent forms itsase base
representing the experience made in enacting the accaatikdpefore. When a task is en-
acted again under similar conditions, results similar tséhobserved before are expected.
Hence, if a task agent finds the data objects received frososemgents to be similar to
those contained in a past task enactment characterizithatter are reused for express-
ing that the task of interest to the task agent has been ehagéén. This makes it possible
to detect enactment of tasks even if no exact match is pessibl

Instance agents determine the most appropriate workflaannes which may belong to
the task enactment cases provided by task agents. A numbeudftics are applied to
determine the relationship between task enactment andimar&nactment efforts already

present. For example, during workflow enactment, the dajiectsbcreated are likely to
share a business case number, or other instantiationiarifehus, when data objects are
similar to these already observed, task enactment is cemegldelated to the respective
workflow instance.

Finally, for every possible pair of task enactment casesnoréiflow instances reported by
corresponding instance agents, the workflow agents detenwtiether the case represents
progress following on a situation found previously. If soe@r more workflow enactment
steps are proposed to explain the task enactment resultsssegl by the case. The cur-
rent work situation is given as workflow enactment charaations for each workflow
definition available.

Issuing Warnings. When PIE has determined a workflow instance based on the warkfl
definitions specified for inverse workflows, managementsraien be warned, such that
countermeasures can be taken. If concrete workflow enattomemacterizations have
been given, they are compared against the respective ¢bdration found using CBR.
Warnings are then only issued if they exceed a certain mimisimilarity. This allows for

a flexible and intuitive specification of inverse workflowss #lustrated in Figure 2(b), it
is sufficient that within data objects, only attributes deirest are given.

If the current situation is found problematic in a post-reartanalysis, the according work-
flow enactment characterization can be reused to specifinvanse workflow. For exam-
ple, when a waste of resources has been detected as depi¢tigdiie 2(b), the concrete
workflow enactment characterization presented by PIE canskd to describe the un-
wanted situation. PIE is capable in detecting parallel ilovkenactment, such that it is
well-suited in detecting inverse workflows which overlapert desired processes. Further-
more, its agent-oriented design makes it flexible to supgmtaptive workflows. Whenever
workflow definitions change, including those serving as thsidfor inverse workflows,
the agent society of the PIE system is reconfigured to matbhbnged workflow defini-
tions. This supports stepwise refinement of workflow debniti describing both desired
and inverse workflows as often required in organizationatfice.

Evaluation. As of this writing, the approach is evaluated within the D¥wnieb eGov-
ernment project [SMMBO06] conducted at the rjm businesstgnis GmbH. The project
aims at providing geographical information on monumentsictv requires to represent
the location and dimension of tens of thousands of histotés @s exactly as possible.
For managing this large amount of data, the project pagitpfollow best practices ex-
pressed as workflow definitions, using a complex set of cusbofs as well as commercial
off-the-shelf software. The PIE system has been deploygohatsing eight sensor agents
and 35 task agents. PIE has proven to be capable in recogmimirk progress at a high
level of detail [Saul10].

To evaluate the concept of inverse workflows, inverse workfiefinitions are currently
developed by conducting interviews with stakeholders,tananalyzing historic data. For
several hundred workflow instances, performance data ikabl@ such as duration, or
defect count within end products. This data is compared peetations, and the reasons
for any deviations are discussed with domain experts. Thenples presented above are
among the first results. In a controlled experiment, it isipkd to configure instance and

workflow agents according to the inverse workflows found, étedmine whether unde-
sired situations are detected during everyday activities.

5 Related work

One of the key aspects of workflow management is to suppognizgtions in contin-
uously improving their business processes. In order togmeundesired development
when designing or adapting workflow definitions, process efiad assistance has been
widely discussed. In [FESO05], the useptternsis suggested for providing such assis-
tance. The patterns express proven steps in, e.g., assusimegific quality, which can be
integrated into arbitrary business processes. Howevele whtterns may foster reuse of
proven concepts and solutions, they can make future adaptagnificantly harder, as the
concerns expressed by a pattern cannot be easily distiregifsom the actual business
aspects. This problem is avoided in [TSvdA09] by descrilzing-pattens Similar to the
idea of denoting inverse workflows, the authors propose phi@tty describe unwanted
enactment behavior, e.g., livelocks. The anti-patteresexpressed in temporal logic,
which allows applying verification techniques to determirfeether a process design may
lead to undesired effects. On the downside, the choseniowtatkes it hard to express
domain-specific anti-patterns observed during orgarinatipractice.

A business-oriented specification fifrbidden behavioiis suggested in [SMO06]. This
approach uses EPCs to denote unwanted workflows, resentidinigverse workflow ap-
proach. The specification of forbidden behavior focusesearifying business processes
during design time by using transformations to speciali2etti nets. As pointed out in
[RvdAO08], however, this may not be sufficient to prevent unteal behavior in a real
work environment. Especially with human workflow partiaipginvolved, the authors ar-
gue that it is required to perforoonformance checkingf processes based on actual work
results. The inverse workflow approach pursues this idesgube PIE system.

In Knowledge Managemenknowledge patternandknowledge anti-patternisave been
studied for documenting knowledge and experiences [RERA84lly, such patterns arise
from multiple knowledge management activities. Templai@s be used for describing
(anti-)patterns including (multiple) solutions, e.g. iWéki. Typically, the occurrence of
a knowledge pattern or anti-pattern is detected by a hunmaithee solutions, e.g. “divide
and conquer” for the anti-pattern “knowledge blob”, arelaggbmanually as well.

Inverse workflows follow the idea afiverse requirementsnown from the fields of Soft-
ware Engineering. Inverse requirements describe coneeptdtware system is not in-
tended to deal with [LDO3]. Typically, this is used to clgrthe concepts addressed in
order to specify the scope of implementation more cleanlyetse workflows also borrow
on the idea of specifying nonfunctional safety and secuetjuirements. Sometimes also
callednegative requirementsr “shall-not” requirements[VL10], these describe hazards
a software system must not expose. For example, it may ndtdyeea to transfer input
data over an unsecured communications channel.

For thread and hazard analysis, negative scenarios situilaverse workflows are de-

noted agnisuse casele03]. They describe the effects of a failing device, sevenvi-
ronmental conditions, or even sabotage through an attaBiexplicitly denoting misuse
cases, appropriate solutions can be elicited, e.g., byngdsliception handling to subsys-
tem functions. As with regular use cases, misuse caseswgipos the generation of test
cases. This is similar to the idea of tracking inverse workftmactment, but is limited
to pre-deployment stages of a software system. In contPd&tsystem allows to mon-
itor processes in situ. Such constant monitoring is alsoudised for intrusion detection
[CBO7]. Using state machines describing typical attackacdes, undesired developments
are detected. However, as with anti-patterns describedeatite chosen formalism makes
it hard to adapt the idea to other scenarios.

6 Conclusion

In this paper, the concept @fiverse workflowsas been presented to explicitly express
undesired work situations. Using a system to automatidedlgk the enactment of in-
verse workflows, situations known as inefficient, errorsroor even dangerous can be
detected as they emerge. This adds a “safety net” to modatitigjties, effectively sup-
porting organizations in adapting their workflow definittoModifications and extensions
unintentionally leading to procedures known as unwantedhaticed in time, such that
countermeasures can be taken as soon as possible.

So far, inverse workflows have been found useful for geogeapmformation manage-
ment. However, the conceptis not limited to any particupgolation domain or modeling
methodology. The presented approach is based on a liglgtvieirmalism of workflow
definition and enactment. This ensures that inverse workficam be easily used in any
organization regardless of the process description laggyea modeling tool preferred.
Further, the PIE system to perform automated workflow enactritacking has been de-
signed domain-independently. Its agent-oriented desligws stepwise refinement of
workflow definitions describing both desired and inversekflows.

References

[Ale03] lan Alexander. Misuse Cases: Use Cases with Hostilent. IEEE Software
20(1):58-66, 2003.

[BAM T09] Ralph Bergmann, Klaus-Dieter Althoff, Mirjam Minor, M& Reichle, and Kerstin
Bach. Case-Based Reasoning: Introduction and Recent @ewehts.Kiinstliche
Intelligenz 23(1):5-11, 2009.

[CBO7] George Cybenko and Vincent H. Berk. Process Quentefys Computer
40(1):62-70, 2007.
[FESO5] Alexander Forster, Gregor Engels, and Tim Scbuatsky. Activity Diagram Pat-

terns for Modeling Quality Constraints in Business ProessiProceedings of the
8th International Conference on Model Driven Engineerimmbguages and Systems
(MoDELS 2005)volume 3713 o£.NCS pages 2—16. Springer, 2005.

[LDO3]

[MTSBO8]

[RFRO9]

[RVdAO8]

[RVAAtHWO6]

[Sau10]

[SMO6]

[SMMBO6]

[SMWO08]

[TSVdA09]

[VL10]

[Wei00]

Julio Cesar Sampaio do Prado Leite and Jorge Horaoiar Perspectives on Soft-
ware Requirements/olume 753 ofinternational Series in Engineering and Com-
puter ScienceSpringer, 2003.

Mirjam Minor, Alexander Tartakovski, Daniel Sclafen, and Ralph Bergmann. Ag-
ile Workflow Technology and Case-Based Change Reuse for-Teng Processes.
International Journal on Intelligent Information Techigies 4(1):80-98, 2008.

Jorg Rech, Raimund L. Feldmann, and Eric Ras. Kedgé Patterns. In M. E.
Jennex, editofzncyclopedia of Knowledge Management (2nd Editit®) Global,
2009.

Anne Rozinat and Wil M. P. van der Aalst. Conformarghecking of processes
based on monitoring real behavidnformation System83(1):64—-95, 2008.

Nick Russell, Wil M. P. van der Aalst, Arthur H. Mer Hofstede, and Petia Wohed.
On the suitability of UML 2.0 activity diagrams for businga®cess modelling. In
Proceedings of the 3rd Asia-Pacific Conference on Concéplodelling (APCCM
2005) volume 53 ofCRPIT, pages 95-104. Australian Computer Society, 2006.

Thomas Sauekutomated Enactment Tracking for Dynamic WorkfloRIsD thesis,
University of Trier, 2010.

Carlo Simon and Jan Mendling. Verification of ForteadBehavior in EPCs. In
Proceedings of the GI Conference Modellierung (MOD20®8Jume 82 ofLNI,
pages 233-242. Gl, 2006.

Thomas Sauer, Kerstin Maximini, Rainer Maximiaind Ralph Bergmann. Sup-
porting Collaborative Business through Integration of texlge Distribution and
Agile Process Management. Multikonferenz Wirtschaftsinformatik 2006 (MKWI
2006) pages 349361, 2006.

Thomas Sauer, Mirjam Minor, and Sascha Werno. Anrkgeiented System for

Workflow Enactment Tracking. IfProceedings of the 17th IEEE International
Workshop on Enabling Technologies: Infrastructure for |@obrative Enterprises

(WETICE'08) pages 235—-240, 2008.

Nikola Trcka, Natalia Sidorova, and Wil M. P. vaerdAalst. Data-Flow Anti-
Patterns: Discovering Dataflow Errors in Workflows. Pnoceedings of the 21st
International Conference on Advanced Information SystE0#&SE’09) volume
5565 ofLNCS pages 425-439. Springer, 2009.

Jeffrey Voas and Phil Laplante. Effectively Definifgpall Not RequirementsEEE
IT Professional12(3):46-53, 2010.

Gerhard WeissMultiagent Systems — A Modern Approach to Distributed Aifi
Intelligence MIT press, 2000.

