
Inverse Workflows for Supporting
Agile Business Process Management

Thomas Sauer
rjm business solutions GmbH
68623 Lampertheim, Germany

t.sauer@rjm.de

Mirjam Minor and Ralph Bergmann
University of Trier

Department of Business Information Systems II
54286 Trier, Germany

{minor,bergmann}@uni-trier.de

Abstract: Agile processes allow organizations to flexibly react on newand unforeseen
situations. However, modifications must adhere to the standards and quality require-
ments given by an organization. In this paper, the concept ofinverse workflowsis
presented to support organizations in meeting this goal. Inverse workflows provide
a means to explicitly express unwanted procedures and work situations. In conjunc-
tion with an automated system to detect inverse workflow enactment, organizations
can prevent undesired developments while they are emerging. This effectively allows
controlling overall process quality while modeling or adapting business process to
stakeholder demand.

1 Introduction

Workflow management has been found useful in many organizations for controlling and
improving the quality of the goods produced and the servicesoffered. To this end, work-
flows automate business processes for reducing wait times, guiding human process partic-
ipants, or providing resources as required. However, organizations face the challenge that
processes have to be quickly adapted to reflect new requirements or shifting customer pri-
orities. To accommodate new customer demands, new tasks mayhave to be incorporated,
or new connections between already known tasks need to be drawn. This leaves the risk
that task sequences emerge which have been learned to be harmful in the past, or which
may lead to sub-standard results.

In this paper, the concept ofinverse workflowsis presented to lower this risk. Inverse
workflows consist of aworkflow definitionproviding a process template which describes
an unwanted procedure. This goes beyond exceptions [RvdAtHW06] such as a work item
failure, a deadline expiration, or a constraint violation like a hurt credit limit. For ex-
ample, an unwanted procedure may describe a sequence of tasks which will lead to data
loss when enacted. If a procedure becomes unwanted only under specific circumstances,
e.g., if a product develops qualities known as problematic,inverse workflows include re-
spective workflow enactment characterizations. These characterizations express undesired
data or task states which may result from executing the underlying workflow definition.
To provide a warning as soon as the work situations describedby an inverse workflow

emerges, theProgress Information Environment (PIE)[Sau10] is used. PIE providesau-
tomated workflow enactment tracking, which evaluates the data produced by organization
members while they are carrying out activities, and identifies the state of the latter along
an ideal process model. In particular, this is applicable toinverse workflows, such that
undesirable developments can be spotted and corrected in a timely manner.

Inverse workflows follow the notion ofinverse requirementsknown from Software Engi-
neering [LD03]. Inverse requirements explicitly specify properties a system is not intended
to have, in order to clarify system behavior. Inverse workflows also borrow on the idea of
specifying nonfunctional safety and security requirements, which describe hazards a soft-
ware system must not expose [VL10]. In workflow management, specifying unwanted
work situations has been addressed so far by specifyingforbidden behavior[SM06] or
anti-patterns[TSvdA09]. Inverse workflows exceed these approaches by providing an
intuitive concept which can be employed regardless of the process description language
or modeling environment preferred by an organization. While applicable to any workflow
management strategy, the concept of inverse workflows has been found most useful in agile
scenarios, where workflow definitions are frequently changed. The concept is evaluated
in the field of geographical information management [SMMB06]. This includes tradi-
tional workflow management strategies, but also agile ones,where workflow definitions
are frequently changed.

The paper is organized as follows. In Section 2, foundationsare presented for expressing
domain-independent workflow definition and enactment. Section 3 discusses how this is
applied for describing inverse workflows. Related work is discussed in Section 5. A short
conclusion given in Section 6 closes this paper.

2 Workflow Definition and Enactment

Inverse workflows can be described in any process description language which allows
expressing self-contained tasks and their interdependencies, such as EPC, UML Activity
Diagrams, or BPMN. For formally describing the building blocks of an inverse workflow
independent of a specific description language, in the following the light-weight model of
abstract workflow definition and enactment introduced in [Sau10] is used. In this model,
any process followed by an organization is described by aworkflow definitioncomprising
a set oftasksand their control-flow relationship. Each task represents an activity that can
be performed by a human or a machine. Tasks may range from short-term decisions such
as selecting between two alternatives, to more complex activities such as writing a report.
Specialized trigger tasks may even launch entire processesbased on another workflow
definition, similar to calling a subroutine in a programminglanguage.

Carrying out a workflow definition leads toworkflow enactment. The concrete efforts in
enacting the workflow definition form aworkflow instanceor simply aworkflow. The tasks
are performed as previously arranged, with their findings expressed asdata objects. Each
task traverses three states “inactive”, “active”, and “completed”, which are all character-
ized by the data available. While a task has not produced any data objects yet, it remains

t1 t2 t3

(active, 0)

d , d1 2 d , d , d1 2 3d1

(completed, 0)

C

(l, r)(inactive, 1)

Figure 1: Instantiation and enactment of a workflow definition.

in state “inactive”. After intermediate data objects have been created, but control flow
has not been passed to successor tasks, the task becomes “active”. With the final results
produced, and control flow passed to successor tasks, a task becomes “completed”. Af-
ter completing a task, its successors may use the data objects available to produce further
workflow results. As workflow definitions may contain loop constructs, a task can traverse
each task state more than once. The work situation reached bya task is fully represented
by a task enactment characterization. This characterization is a triple(C, l, r) comprising
a combination of the data availableC, the applicable task state labell, and a number of
repetitionsr.

In Figure 1, a workflow definition and its enactment is illustrated based on the modeling
language introduced in [MTSB08]. A workflow definition consisting of three taskst1, t2,
andt3 arranged in a loop is enacted. Taskt1 has been performed before, with its results
represented by data objectd1. As taskt1 is already available for another iteration, its task
state is specified as “inactive”. The number of repetitions given byr = 1 indicates thatt1
has been fully completed one time before. Using data objectd1, taskt2 has been recently
completed. The task created an additional data objectd2, and the task statet2 is “com-
pleted”. The valuer = 0 represents that there have been no previous completions. Finally,
taskt3 has been started, using the data objects created previously. Taskt3 has produced
intermediate resultd3, leading to the setC = {d1, d2, d3} of currently available data ob-
jects. Taskt3 has not passed control flow yet, such that it is described “active”. Since it
has not been completed before, it holdsr = 0. For each task, the work situation reached is
specified by a task enactment characterization comprising the set of data objects currently
availableC, the task state, and the number of repetitions performed. For example, the task
enactment characterization fort3 is given by({d1, d2, d3}, active, 0).

The combination of these task enactment characterizationsleads to aworkflow enactment
characterization, describing a “snapshot” of the workflow enactment performed so far.
It lists the task enactment characterization triples for each task contained in a workflow
definition. Accordingly, the overall work situation illustrated in Figure 1 is described as
{(t1, {d1, d2, d3}, inactive, 1), (t2, {d1, d2, d3}, completed, 0), (t3, {d1, d2, d3}, active, 0)}.

3 Specifying Inverse Workflows

Workflow definitions aim at the automation of business processes. These processes typi-
cally describe how to produce goods or how to provide a service as intended by an orga-

CAD data
conversion

Connect
features

Copy
data

(a) Data loss: Every enactment of this workflow definition will lead to data loss.

(active, 10)

Print overview
map

[L
Print detail

map
L]

map1 : Hardcopy

municipality = “A3”
name = “Overview”
creator = ?
...

(b) Waste of resources: In the characterized work situation, an unnecessary amount of paper is produced.

Figure 2: Inverse workflow examples

nization, such that workflow definitions often represent well-tested best practices. During
everyday operations, adaptation of these practices is almost inevitable. Ever-changing cus-
tomer demand typically requires an organization to evolve and extend existing workflow
definitions, or to introduce entirely new ones. However, themodifications applied may
also lead to unintentional results, accidentally integrating procedures known as inefficient,
error-prone or even dangerous into the workflow definitions followed by an organization.
In result, sub-standard products are created, or suboptimal task sequences are enacted.

Organizations can explicitly describe unwanted procedures already known by specifying
inverse workflows. Each inverse workflow consists of a workflow definition, and aset
of workflow enactment characterizations. The workflow definition describes a procedure
which is known as ineffective, expansive, or even harmful, because, e.g., efforts are du-
plicated or safety measures are violated. The workflow enactment characterizations de-
scribe concrete work situations which have led to data objects with one or more undesired
qualities, such as a report document referencing to an outdated standard. Alternatively,
the workflow enactment characterizations may document unwanted task states or repeti-
tion counts, like an excessive amount of repetitions performed for a specific task. If the
workflow definition providing the basis for the inverse workflow unconditionally leads to
unwanted effects, workflow enactment characterizations may be omitted.

In Figure 2, two typical inverse workflows are presented as observed within the field of
geographical information management. In the first, a task sequence is depicted which is
known to lead to data loss. The task “CAD data conversion” creates database records
which would be removed by the subsequent “Connect features”, and conveyed to a pro-
duction system by “Copy data”. This sequence is to be unconditionally avoided, such that
no workflow enactment characterizations are specified. In the second example, an inverse
workflow describes potential waste of resources. When the task “Print overview map”
results in a relatively small hardcopy of size A3, the regionof interest may not have been
properly selected, as a typical hardcopy is at least of size A2 or larger. If in addition, the

task “Print detail map” is performed more than ten times in a row, an unnecessary amount
of paper is produced.

Inverse workflows complementing desired workflow definitions. Inverse workflows
can refer to situations which are not covered by desired workflow definitions. For example,
the first inverse workflow shown in Figure 2(a) is not covered by any other workflow
definition. Thus, the task sequence expressed can only be reached if workflow definitions
are adapted accordingly, e.g., by a novice workflow modeler.By modeling the unwanted
sequence explicitly, the changed workflow definition can be checked whether unwanted
aspects have emerged, which is discussed below in detail. Most extreme, an organization
may only state inverse workflows, implicitly allowing all other workflows. This can be
useful in highly dynamic or agile scenarios, when it is only known what is not wanted, and
desirable procedures still have to be developed.

Inverse workflows as corner-cases.Inverse workflows may also overlap with other, de-
sired workflow definitions. In this case, the situation described can be reached by following
another workflow definition, but only on rare occasion. The inverse workflow illustrated
in Figure 2(b) exhibits an example. The sequence of tasks illustrated is contained as-is
within another workflow, but the workflow enactment characterization specify undesirable
corner cases. This can be useful to avoid a large number of case distinctions through
XOR-elements or similar, leading to simplified workflow definitions which are easier to
understand. In extreme, all case distinctions would be moved to inverse workflows, mak-
ing them complementary as stated above.

4 Detecting Inverse Workflow Enactment

By specifying inverse workflows, organizations explicitlydocument unwanted procedures,
which, ideally, are never enacted. However, when workflow adaptation is possible, this
cannot be guaranteed. In order to prevent squandering of resources, sub-standard products
and services, or even dangerous situations, organizationsmust be warned whenever in-
verse workflows are enacted. This can be accomplished by using the Progress Information
Environment (PIE) [SMW08, Sau10].

PIE is a Multi-Agent System (MAS, [Wei00]) designed for providing automated workflow
enactment tracking. The PIE system evaluates the data produced by workflow participants
while carrying out their everyday activities, and identifies the work progress achieved
along previously defined workflow definitions. In particular, this allows detecting enact-
ment of inverse workflows. PIE employs four different types of software agents, which
are arranged on respective layers. The overall system resides on a base layer comprising
the information systems deployed, e.g., databases or document repositories. On a layer
above,sensor agentsconnect to these systems, transforming the data created andmodified
into more general data objects for further evaluation. On the next layer,task agentsassess
whether the data objects found indicate actual task results. On top,instance agentsdeter-
mine the workflow instances the task results possibly belongto. The topmost layer hosts
workflow agentsproviding a consistent view on the work progress achieved with respect

Figure 3: The PIE system displaying current workflow enactment.

to the workflow definitions used. Figure 3 shows a screenshot of such view presented by
the PIE system.

Sensor agents transform content specific to a particular information system into concepts
understood by agents on the task, instance, and workflow layers. For example, when a team
member enacts the task “Print overview map” as shown in Figure 2(b), information about
the hardcopy is stored within a print server log file. An according sensor agent transforms
the log entries into a data object of type “Hardcopy” to characterize task results.

Task agents applyCase-Based Reasoning(CBR) [BAM+09] to evaluate the data objects
provided by sensor agents. To this end, task agents compare the data objects received
with those contained in task enactment characterizations known from past enactment ef-
forts. Each of these characterizations serves as atask enactment casewhich correlates a
known set of data objects with a concrete task state label andan applicable number of task
repetitions. The set of task enactment cases available to a task agent forms itscase base
representing the experience made in enacting the accordingtask before. When a task is en-
acted again under similar conditions, results similar to those observed before are expected.
Hence, if a task agent finds the data objects received from sensor agents to be similar to
those contained in a past task enactment characterization,the latter are reused for express-
ing that the task of interest to the task agent has been enacted again. This makes it possible
to detect enactment of tasks even if no exact match is possible.

Instance agents determine the most appropriate workflow instances which may belong to
the task enactment cases provided by task agents. A number ofheuristics are applied to
determine the relationship between task enactment and workflow enactment efforts already

present. For example, during workflow enactment, the data objects created are likely to
share a business case number, or other instantiation criteria. Thus, when data objects are
similar to these already observed, task enactment is considered related to the respective
workflow instance.

Finally, for every possible pair of task enactment cases andworkflow instances reported by
corresponding instance agents, the workflow agents determine whether the case represents
progress following on a situation found previously. If so, one or more workflow enactment
steps are proposed to explain the task enactment results expressed by the case. The cur-
rent work situation is given as workflow enactment characterizations for each workflow
definition available.

Issuing Warnings. When PIE has determined a workflow instance based on the workflow
definitions specified for inverse workflows, management roles can be warned, such that
countermeasures can be taken. If concrete workflow enactment characterizations have
been given, they are compared against the respective characterization found using CBR.
Warnings are then only issued if they exceed a certain minimum similarity. This allows for
a flexible and intuitive specification of inverse workflows. As illustrated in Figure 2(b), it
is sufficient that within data objects, only attributes of interest are given.

If the current situation is found problematic in a post-mortem analysis, the according work-
flow enactment characterization can be reused to specify an inverse workflow. For exam-
ple, when a waste of resources has been detected as depicted in Figure 2(b), the concrete
workflow enactment characterization presented by PIE can beused to describe the un-
wanted situation. PIE is capable in detecting parallel workflow enactment, such that it is
well-suited in detecting inverse workflows which overlap other, desired processes. Further-
more, its agent-oriented design makes it flexible to supportadaptive workflows. Whenever
workflow definitions change, including those serving as the basis for inverse workflows,
the agent society of the PIE system is reconfigured to match the changed workflow defini-
tions. This supports stepwise refinement of workflow definitions describing both desired
and inverse workflows as often required in organizational practice.

Evaluation. As of this writing, the approach is evaluated within the DenkXweb eGov-
ernment project [SMMB06] conducted at the rjm business solutions GmbH. The project
aims at providing geographical information on monuments, which requires to represent
the location and dimension of tens of thousands of historic sites as exactly as possible.
For managing this large amount of data, the project participants follow best practices ex-
pressed as workflow definitions, using a complex set of customtools as well as commercial
off-the-shelf software. The PIE system has been deployed atrjm using eight sensor agents
and 35 task agents. PIE has proven to be capable in recognizing work progress at a high
level of detail [Sau10].

To evaluate the concept of inverse workflows, inverse workflow definitions are currently
developed by conducting interviews with stakeholders, andby analyzing historic data. For
several hundred workflow instances, performance data is available, such as duration, or
defect count within end products. This data is compared to expectations, and the reasons
for any deviations are discussed with domain experts. The examples presented above are
among the first results. In a controlled experiment, it is planned to configure instance and

workflow agents according to the inverse workflows found, to determine whether unde-
sired situations are detected during everyday activities.

5 Related work

One of the key aspects of workflow management is to support organizations in contin-
uously improving their business processes. In order to prevent undesired development
when designing or adapting workflow definitions, process modeling assistance has been
widely discussed. In [FES05], the use ofpatternsis suggested for providing such assis-
tance. The patterns express proven steps in, e.g., assuringa specific quality, which can be
integrated into arbitrary business processes. However, while patterns may foster reuse of
proven concepts and solutions, they can make future adaptation significantly harder, as the
concerns expressed by a pattern cannot be easily distinguished from the actual business
aspects. This problem is avoided in [TSvdA09] by describinganti-pattens. Similar to the
idea of denoting inverse workflows, the authors propose to explicitly describe unwanted
enactment behavior, e.g., livelocks. The anti-patterns are expressed in temporal logic,
which allows applying verification techniques to determinewhether a process design may
lead to undesired effects. On the downside, the chosen notation makes it hard to express
domain-specific anti-patterns observed during organizational practice.

A business-oriented specification offorbidden behavioris suggested in [SM06]. This
approach uses EPCs to denote unwanted workflows, resemblingthe inverse workflow ap-
proach. The specification of forbidden behavior focuses on verifying business processes
during design time by using transformations to specializedPetri nets. As pointed out in
[RvdA08], however, this may not be sufficient to prevent unwanted behavior in a real
work environment. Especially with human workflow participants involved, the authors ar-
gue that it is required to performconformance checkingof processes based on actual work
results. The inverse workflow approach pursues this idea using the PIE system.

In Knowledge Management,knowledge patternsandknowledge anti-patternshave been
studied for documenting knowledge and experiences [RFR09]. Ideally, such patterns arise
from multiple knowledge management activities. Templatescan be used for describing
(anti-)patterns including (multiple) solutions, e.g. in aWiki. Typically, the occurrence of
a knowledge pattern or anti-pattern is detected by a human, and the solutions, e.g. “divide
and conquer” for the anti-pattern “knowledge blob”, are applied manually as well.

Inverse workflows follow the idea ofinverse requirementsknown from the fields of Soft-
ware Engineering. Inverse requirements describe conceptsa software system is not in-
tended to deal with [LD03]. Typically, this is used to clarify the concepts addressed in
order to specify the scope of implementation more clearly. Inverse workflows also borrow
on the idea of specifying nonfunctional safety and securityrequirements. Sometimes also
callednegative requirementsor “shall-not” requirements[VL10], these describe hazards
a software system must not expose. For example, it may not be allowed to transfer input
data over an unsecured communications channel.

For thread and hazard analysis, negative scenarios similarto inverse workflows are de-

noted asmisuse cases[Ale03]. They describe the effects of a failing device, severe envi-
ronmental conditions, or even sabotage through an attacker. By explicitly denoting misuse
cases, appropriate solutions can be elicited, e.g., by adding exception handling to subsys-
tem functions. As with regular use cases, misuse cases also support the generation of test
cases. This is similar to the idea of tracking inverse workflow enactment, but is limited
to pre-deployment stages of a software system. In contrast,PIE system allows to mon-
itor processes in situ. Such constant monitoring is also discussed for intrusion detection
[CB07]. Using state machines describing typical attack scenarios, undesired developments
are detected. However, as with anti-patterns described above, the chosen formalism makes
it hard to adapt the idea to other scenarios.

6 Conclusion

In this paper, the concept ofinverse workflowshas been presented to explicitly express
undesired work situations. Using a system to automaticallytrack the enactment of in-
verse workflows, situations known as inefficient, error-prone, or even dangerous can be
detected as they emerge. This adds a “safety net” to modelingactivities, effectively sup-
porting organizations in adapting their workflow definitions. Modifications and extensions
unintentionally leading to procedures known as unwanted are noticed in time, such that
countermeasures can be taken as soon as possible.

So far, inverse workflows have been found useful for geographical information manage-
ment. However, the concept is not limited to any particular application domain or modeling
methodology. The presented approach is based on a light-weight formalism of workflow
definition and enactment. This ensures that inverse workflows can be easily used in any
organization regardless of the process description language or modeling tool preferred.
Further, the PIE system to perform automated workflow enactment tracking has been de-
signed domain-independently. Its agent-oriented design allows stepwise refinement of
workflow definitions describing both desired and inverse workflows.

References

[Ale03] Ian Alexander. Misuse Cases: Use Cases with HostileIntent. IEEE Software,
20(1):58–66, 2003.

[BAM +09] Ralph Bergmann, Klaus-Dieter Althoff, Mirjam Minor, Meike Reichle, and Kerstin
Bach. Case-Based Reasoning: Introduction and Recent Developments.Künstliche
Intelligenz, 23(1):5–11, 2009.

[CB07] George Cybenko and Vincent H. Berk. Process Query Systems. Computer,
40(1):62–70, 2007.

[FES05] Alexander Förster, Gregor Engels, and Tim Schattkowsky. Activity Diagram Pat-
terns for Modeling Quality Constraints in Business Processes. InProceedings of the
8th International Conference on Model Driven Engineering Languages and Systems
(MoDELS 2005), volume 3713 ofLNCS, pages 2–16. Springer, 2005.

[LD03] Julio Cesar Sampaio do Prado Leite and Jorge Horacio Doorn.Perspectives on Soft-
ware Requirements, volume 753 ofInternational Series in Engineering and Com-
puter Science. Springer, 2003.

[MTSB08] Mirjam Minor, Alexander Tartakovski, Daniel Schmalen, and Ralph Bergmann. Ag-
ile Workflow Technology and Case-Based Change Reuse for Long-Term Processes.
International Journal on Intelligent Information Technologies, 4(1):80–98, 2008.

[RFR09] Jörg Rech, Raimund L. Feldmann, and Eric Ras. Knowledge Patterns. In M. E.
Jennex, editor,Encyclopedia of Knowledge Management (2nd Edition). IGI Global,
2009.

[RvdA08] Anne Rozinat and Wil M. P. van der Aalst. Conformance checking of processes
based on monitoring real behavior.Information Systems, 33(1):64–95, 2008.

[RvdAtHW06] Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Petia Wohed.
On the suitability of UML 2.0 activity diagrams for businessprocess modelling. In
Proceedings of the 3rd Asia-Pacific Conference on Conceptual Modelling (APCCM
2005), volume 53 ofCRPIT, pages 95–104. Australian Computer Society, 2006.

[Sau10] Thomas Sauer.Automated Enactment Tracking for Dynamic Workflows. PhD thesis,
University of Trier, 2010.

[SM06] Carlo Simon and Jan Mendling. Verification of Forbidden Behavior in EPCs. In
Proceedings of the GI Conference Modellierung (MOD2006), volume 82 ofLNI,
pages 233–242. GI, 2006.

[SMMB06] Thomas Sauer, Kerstin Maximini, Rainer Maximini,and Ralph Bergmann. Sup-
porting Collaborative Business through Integration of Knowledge Distribution and
Agile Process Management. InMultikonferenz Wirtschaftsinformatik 2006 (MKWI
2006), pages 349–361, 2006.

[SMW08] Thomas Sauer, Mirjam Minor, and Sascha Werno. An Agent-oriented System for
Workflow Enactment Tracking. InProceedings of the 17th IEEE International
Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE’08), pages 235–240, 2008.

[TSvdA09] Nikola Trcka, Natalia Sidorova, and Wil M. P. van der Aalst. Data-Flow Anti-
Patterns: Discovering Dataflow Errors in Workflows. InProceedings of the 21st
International Conference on Advanced Information Systems(CAiSE’09), volume
5565 ofLNCS, pages 425–439. Springer, 2009.

[VL10] Jeffrey Voas and Phil Laplante. Effectively DefiningShall Not Requirements.IEEE
IT Professional, 12(3):46–53, 2010.

[Wei00] Gerhard Weiss.Multiagent Systems – A Modern Approach to Distributed Artificial
Intelligence. MIT press, 2000.

