
Acquiring Adaptation Cases for Scientific

Workflows

Mirjam Minor and Sebastian Görg

University of Trier
Department of Business Information Systems, D-54286 Trier, Germany

{minor,goergs}@uni-trier.de

http://www.wi2.uni-trier.de/

Abstract. This paper addresses the automated acquisition of adapta-
tion cases for the modification of scientific workflows. Pairs of workflow
versions from community repositories are analysed to extract transfor-
mation pathways from one workflow version to another. An algorithmic
solution is provided and investigated by experiments with promising re-
sults.

Keywords: scientific workflows, workflow reasoning, adaptation.

1 Introduction

Scientific workflows [3] are dedicated to support data-intensive scientific exper-
iments by applying workflow technology. A workflow organizes work by tasks

that descibe a human activity or a computational step. The workflow arranges
the tasks and the according data in a certain execution order. This order can be
specified by data dependencies forming the data flow as well as by routing con-
structs like sequences, parallel branches, sub-workflows and multiple instances
that govern the control flow of execution. Prominent application areas for scien-
tific workflows are molecular biology, astronomy, geology, or atom physics. Sam-
ple tasks are data transformation and analysis steps or data extraction steps like
accessing measurement readings from an external database. The workflow tech-
nology controls the execution of the experimental process and operates large
parts of it in silico, i.e. in the computer [8]. In business workflow scenarios,
human tasks are rather prevalent while scientific workflows use to be computa-
tional workflows that consist exclusively of computational steps. An increasing
number of Web services is available for computational steps from different fields
like genome analysis in bioinformatics. BLAST (Basic Local Alignment Search
Tool)1, for example, provides many Web services on the analysis of biological
sequences. It has several benefits to represent an experiment formally as a work-
flow instead of copying the outputs of one computational step to the inputs of
another step by hand or by a program written in a script language. The scien-
tists are enabled ”to focus on domain-specific (science) aspects of their work,

1 http://blast.ncbi.nlm.nih.gov/Blast



rather than dealing with complex data management and software issues” [8, p.
32], the execution of the experiments can be optimized on available ressources in
a distributed environment, the provenance of the output data can be recorded,
and the scientific workflows can be shared and reused.
Workflow reasoning is recently an emerging research field that provides auto-
mated methods for reasoning about workflows and execution traces [7, 12, 6, 2].
This work addresses the automated adaptation of scientific workflows as rea-
soning method and particularly the automated acquisition of adaptation cases
for scientific workflows. An adaptation case records experience from a previ-
ous workflow adaptation episode. Adaptation cases occur frequently in scientific
workflows. For instance, an update of a Web service with slightly different input
parameters may require additional data transformation steps in the scientific
workflow. This is a sample for an adaptation case that occurs during workflow
modeling at build time. An adaptation episode may also occur during workflow
execution at run time caused by an unforeseen event, for instance if the quality
of an intermediary result is not sufficient. Additional steps may be inserted, for
instance a split of the data into two subsets before re-running some computa-
tional steps. Of course, changes at run time are only feasible in case of an agile
workflow system [11] that is able to continue the execution of workflows that
have been adapted. In our previous work on workflow reasoning [11, 10], we in-
vestigated agile workflow technology including case-based adaptation of business
workflows. An automated adaptation support has turned out to be benefitial for
the persons that are responsile for the workflow modeling and adaptation. As an
adaptation of scientific workflows has to consider the data flow in addition to the
control flow, it is an even more challenging modeling task than the adaptation of
business workflows that focus mainly on the control flow. Hence, an automated
support by adaptation cases would be very benefitial for the scientists dealing
with scientific workflows.
In this work, we aim at (I) confirming the hypothesis that case-based adaptation

methods are applicable for scientific workflows at all and (II) developing a novel

method for extracting adaptation cases automatically from community reposi-
tories of scientific workflows. The opportunities to apply workflow adaptation
cases - may they be acquired automatically or by hand - go even beyond the
traditional Case-Based-Reasoning (CBR) idea of case reuse: The transformation
pathways from one workflow to another that are recorded by an adaptation case
can be used to visualize or measure deviations between workflows addressing
the same topic for compliance or reconcilability purposes. Scientific workflows
may be checked, for instance, if teams of scientists aim to cooperate. Business
workflows may be compared, for instance, after mergers and acquisitions. The
remainder of the paper is organized as follows: In Sect. 2, workflow adaptation
cases are introduced. Sect. 3 sketches the case-based adaptation of workflows. In
Sect. 4, the automated acquisition of adaptation cases from community repos-
itories is presented. Sect. 5 deals with an experimental evaluation. In Sect. 6,
related work is discussed. A conclusion is drawn in Sect. 7.



2 Workflow Adaptation Cases

Case-based adaptation methods for workflows use adaptation cases for recording
adaptation episodes. The case structure is impacted by the workflow language
in which the workflows are specified. Most of the present workflow languages
are graph-based in the sense that they consist of workflow elements as atomic
parts organized in a flow-oriented manner, i.e. the elements can be represented
by nodes and edges forming the flow of tasks. In this work, we focus on graph-
based languages. We use the Simplified conceptual unified workflow language
(Scufl) [13] as an example of an XML-based language whose elements describe
nodes and edges of a workflow graph. Scufl workflows are dedicated to scien-
tific workflows that are to be executed by the Taverna system [13]. Scufl has
the following types of workflow elements that are subsumed to the set of nodes:
tasks (<s:processor>) including placeholder tasks for sub-workflows, data ob-
jects for workflow inputs (<s:source>), and data objects for workflow outputs
(<s:sink>). In the sample on the left hand side (1b) of Fig 1, the workflow
has five nodes at top-level depicted by rectangular boxes: one workflow input
node, two workflow output nodes, one placeholder task for the sub-workflow
’Sequence or ID’ (containing further nodes at sub-workflow level), and one task
’tmap’, which calls a Soaplab invocation as indicated by the light colour. Other
types of Scufl tasks call on, for instance, a single Web service operation or a
local Java function. The type of a task as well as further properties like input
and output ports are specified as child elements of the XML element but do
not belong to the set of nodes in the graph representation and are consequently
not depicted. The edges in the workflow graph are derived from the following
types of workflow elements of Scufl: Data flow edges (<s:link>) are depicted
as arcs; coordination constraints (<s:coordination>) play the role of control
flow edges as depicted by a connecting line with a circle. In the sample work-
flow (1b) of Fig. 1, such a constraint is specified, for instance, between the tasks
’Fail if identifer’ and ’seqret’, which means that task ’Fail if identifier’ has to be
completed before ’seqret’ can be scheduled for execution. The details of the co-
ordination constraints are specified again by child elements of the XML elements
but are likewise not part of the graph representation.

An adaptation case can now be described as follows (compare our previous
work [10]):

1. The problem part consists of
(a) a semantic description of the change
(b) a graph-based representation of the anterior workflow version prior to

the adaptation.

2. The solution part contains
(a) the posterior workflow version, i.e. the adapted workflow, in graph-based

representation
(b) the description of the adaptation steps(added and deleted workflow el-

ements) that have been executed to transform the anterior workflow
version into the posterior.



1 (a) Change description: “Add GFF output.”

1 (b) 2 (a)

2 (b)

<ADDList>

<Chain>

<Pre>

<s:processor name="tmap" refID="20" >

</Pre>

<WorkflowElements>

<s:link source="tmap:outfile" sink="Format_as_GFF:tmap_output"

sourceID="20" sinkID="52" refID="51" />

<s:processor name="Format_as_GFF" refID="52" />

<s:link source="Format_as_GFF:tmap_gff" sink="tmap_GFF"

sourceID="52" sinkID="54" refID="53" />

<s:sink name="tmap_GFF" refID="54" />

</WorkflowElements>

<Post>

</Post>

</Chain>

</ADDList>

<DELList>

</DELList>

Fig. 1. Sample adaptation case with two versions of a workflow for the analysis of
proteine genomes (retrieved from the workflow repository www.myexperiment.org).



Fig. 1 depicts a sample adaptation case in that an additional processing step
’Format as GFF’ with an additional data output object ’tmap GFF’ is inserted
into the workflow (compare the two workflow versions depicted in (2a) and (2b)).
The semantic change description characterizes the changes that have been made
from the anterior to the posterior version. This part of the problem description
makes use of traditional case representation approaches, e.g. a structural repre-
sentation or a textual representation. The sample change description in (1a) of
Fig. 1 is a text. Workflow versions are represented in a graph-based way by sets
of nodes and edges as described before. The representation of the adaptation
steps deserves some special attention. Similar to STRIPS operators, the adap-
tation steps are described by an add and a delete list. Each list contains a set
of chains of workflow elements. A chain encapsulates a connected sub-graph of
workflow elements that are to be added or deleted ’in a chain’, i.e. the accord-
ing edit operations are either fully applied or not applied at all while reusing
the adaptation case. Furthermore, each chain records a pair of anchor sets that
describe the positions within the workflow graph where the edit operations have
taken place. The pre anchors are the workflow elements (in the anterior work-
flow) after which workflow elements from the chain have been added or deleted.
The post anchors are the workflow elements from the anterior workflow following
the last elements of the chain. Hence, the set of anchors describes the connectors
at which a sub-graph has been inserted or pruned out. The XML snippet in the
lower part of Fig. 1 shows a representation of an add list with scufl elements.
It contains one chain of four workflow elements to be inserted namely the task
’Format as GFF’, the output data object ’tmap GFF’ and two data links. The
chain has only one connector to the anterior graph namely the ’tmap’ task. It is
a pre anchor as it is connected via an outgoing edge with the new sub-graph. The
set of post anchors of this chain is empty as well as the delete list of the entire
case. The anchors are further used during the reuse of the workflow adaptation
to identify similar points in new workflows at which the proposed adaptation
can be applied. (2a) is mostly redundant within the case structure as it could be
reconstructed from (1b) and (2b). It is recorded for reasons of readability only
(graph layout).

3 Case-based Workflow Adaptation

Although the workflow adaptation itself is not in the scope of this work we will
briefly sketch the case-based method for workflow adaptation to make the auto-
mated creation of adaptation cases more plausible to the reader. The case base
consists of adaptation cases. The new problem to be solved (query) consists of a
target workflow (which may be already partially executed) and the description
of the current change request to the target workflow. Hence, the similarity mea-
sure must be able to assess the similarity of two change descriptions as well as
of two workflows. Please refer to our previous work [11] and to the literature [9,
1] for similarity measures for workflows. The similarity-based retrieval provides
the most relevant adaptation cases from the case base. The best matching case is



selected for reuse (either automatically according to the values of the similarity
function or by user interaction). In the reuse phase, the best matching adapta-
tion case is applied to the target workflow in order to adapt it according to the
change request. This occurs in two distinct steps. First, the concrete location in
the target workflow is determined that needs to be changed. This is necessary
as there are usually many different positions within the workflow at which a
chain from the add list can be inserted or to which the deletions in the delete
list can be applied. Second, the changes are applied to the target workflow at
the determined locations. The resulting adapted workflow is then the proposed
solution. During the subsequent revise phase the user can validate the workflow
adaptations proposed: she can either confirm them or revise them by manually
performing appropriate adaptations herself. First experiments on automated,
case-based adaptation of workflows have been conducted successfully (see [10]
for the results). Hence, we can now turn to the case acquisition task and present
a solution to automate this tedious work in the following.

4 Case Acquisition

The automated acquisition of workflow adaptation cases follows the idea of de-
termining the difference between a pair of subsequent workflow versions and
deriving a case from this delta. A huge amount of scientific workflows in differ-
ent versions are available in community repositories2. Mostly, machine-readable
representations of the workflow graphs are available and textual change descrip-
tions are stored as revision comments. Hence, cases can be acquired from the
content of such repositories by the following steps:

1. Extract pairs of subsequent workflow versions with a change description
2. Derive atomic edit operations (add an element, delete an element) from the

differences of the sets of workflow elements from both versions
3. Organize the edit operations in chains with anchors.

The first step of the case acquisition is to select subsequent pairs of work-
flow versions and store their formal representations together with the textual
description of the change in parts 1 (a),(b) and 2 (a) of a new case. Cases with
an empty change description are not considered.

The second step is to gain the atomic edit operations from the formal rep-
resentations. Set differences are determined for each type of workflow element
as follows. The hierarchical structure of the top-level workflow with all nested
sub-workflows is analysed and recorded in a sub-workflow tree. The root node
of the sub-workflow tree stands for the top-level workflow while the other nodes
represent a sub-workflow at the according level each. Fig. 2 a) illustrates this by
a sub-workflow tree generated for the sample case in Fig. 1. As the hierarchical
structure of the anterior workflow version may differ from the structure of the

2 Sample repositories for scientific workfows are available at www.vistrails.org and
www.myexperiment.org



posterior version, two trees Ta, Tp have to be generated initially. The two con-
structed trees will be merged at the end in order to get one sub-workflow tree
containing all atomic edit operations between the two versions. In depth-first
search, the nodes of Ta are successively enriched by add and delete lists for each
type of workflow element at the level of the actually investigated sub-workflow.
The set difference between the set of data objects for workflow inputs of a sub-
workflow X of the anterior version and the set of data objects for inputs of
the same sub-workflow X ′ of the posterior version, for instance, forms the ac-
cording delete list X.DEL inputDataObjects. The ’same’ sub-workflow means
that both sub-workflows have equal names and have the same position in Ta

and Tp with respect to the path from the root node. The set X ′ \ X forms the
corresponding add list. A sub-workflow that has been added entirely is stored
by the placeholder task in the according list for placeholder tasks as well as by
an additional sub-workflow node in Ta. The sub-workflow node is enriched by
add and delete lists for the inner elements of the sub-workflow. Where required,
further sub-workflow nodes are inserted into Ta below the new node. From the
resulting, fully expanded and enriched sub-workflow tree T ′

a
all edit operations

that have taken place can be reproduced. The workflow elements and their po-
sition within the hierarchy of sub-workflows is recorded unambigously except
for the order of sibling sub-workflow nodes. The latter is not significant as the
dependencies between tasks and objects are specified explicitely by edges in the
formal representation (data links and coordination constraints).

Fig. 2. Sub-workflow tree and add graph generated for the sample case in Fig. 1.

Though the sub-workflow tree is capable for a reconstruction of the change,
it alone is not sufficient for a transfer of the change to another target workflow.
Rather than applying the edit operations directly to the target workflow, the
connected workflow elements should be grouped in order to preserve the connec-
tivity and to enable the application of a chain of edit operations ’fully or not at
all’. The anchor principle as described in Sect. 2 comes into play for mapping the



positions of the chains. Thus, the third step of the automatic case acquisition
is to group the atomic edit operations in chains and to determine appropri-
ate anchors for each chain. This is done by constructing maximum connected
sub-graphs of the workflow graph consisting of workflow elements conjointly af-
fected by the same type of atomic edit operation, the so-called add graphs and
delete graphs. Fig. 2 b) depicts a sample add graph. An add graph consists of
added data objects and tasks including placeholder tasks as nodes and added
data links and coordination constraints as directed edges. As a graph can only
contain edges with a source and a sink, the workflow elements that are source
of an added data link or coordination constraint are included as nodes in the
add graph also if they are not added themselves. The nodes of this particular
set are designated as the pre anchors of the chain. The same holds for workflow
elements that are sink of an added link or coordination constraint. The set of
those particular nodes forms the post anchors of the chain. The delete graphs
are built analogously. Add and delete graphs may span several sub-workflows.

Algorithm 1 Build add graphs1

input2

Sub-workflow tree t (with sub-workflow nodes numbered in the3

order of a breadth first search from 0 to sizeOfTree)4

output5

Forest addGraphs6

begin7

dispoN[sizeOfTree]:= array of lists of workflow elements;8

dispoE[sizeOfTree]:= array of lists of workflow elements;9

anCands[sizeOfTree]:= array of lists of workflow elements;10

addTrees:=∅;11

foreach i=0..sizeOfTree do12

dispoN[i]:=unification of all add lists of type task, data13

input object, data output object, or placeholder task14

of i-th (sub-)workflow node;15

dispoE[i]:= unification of all add lists of type data link16

or coordination constraint of i-th (sub-)workflow;17

anCands[i]:= unification of all tasks, data input objects,18

data output objects and placeholder tasks of i-th (sub-)19

workflow except the elements of any add or delete list;20

od21

foreach i=0..sizeOfTree do22

addGraphs:=addGraphs ∪23

createMaxConGraphs(i,dispoN,dispoE,anCands);24

od25

return addGraphs;26

end27



function graphSet createMaxConGraphs(i,dispoN,dispoE,anCands)28

graphSet:=∅;29

while dispoN[i]!=∅ do30

openPH:=∅;31

currentN:=dispoN[i].firstEl;32

dispoN[i].delete(currentN);33

currentG:={currentN};34

if currentN is placeholder do35

openPH.add(currentN);36

od37

openGE:={currentN};38

while openGE!=∅ do39

currentEl:=openGE.firstEl;40

openGE.delete(currentEl);41

if currentEl is node do42

expandE(currentG,i,openGE, dispoE,currentEl);43

else44

expandN(currentG,i,openPH,openGE,dispoN,anCands,currentEl);45

od46

od47

while openPH!=∅ do48

currentPH:=openPlaceHolder.firstEl;49

expandSFW(currentG,currentPH,openPH,dispoE,dispoN);50

openPH.delete(currentPH);51

od52

graphSet.add(currentG);53

od54

while dispoE[i]!=∅ do55

currentEdge:=dispoE[i].firstEl;56

dispoE[i].delete(currentEdge);57

currentG:={currentEdge};58

expandN(currentG,i,openPH,openGE,dispoN,anCands,currentEl);59

graphSet.add(currentG);60

od61

return graphSet;62

function expandE(currentG,i,openGE,dispoE,currentEl)63

foreach j=0..dispoE[i].size do64

currentEdge:=dispoE[i][j];65

if currentEdge touches currentEl do66

openGE.add(currentEdge);67

currentG.add(currentEdge);68

dispoE[i].delete(currentEdge);69

od70

od71

openGE.delete(currentEl);72



function expandN(currentG,i,openPH,openGE,dispoN,anCands,currentEl)73

expanded:=false;74

foreach j=0..dispoN[i].size do75

currentN:=dispoN[i][j];76

if currentN touches currentEl do77

openGE.add(currentN);78

currentG.add(currentN);79

dispoN[i].delete(currentN);80

if currentN is placeholder do openPH.add(currentN);81

od82

expanded:=true;83

od84

od85

if !expanded do86

foreach j=0..anCands[i] do87

currentN:=anCands[i][j];88

if currentN touches currentEl do89

currentG.addAnchor(currentN);90

od91

od92

od93

openGE.delete(currentEl);94

function expandSWF(currentG,currentPH,openPH,dispoE,dispoN)95

openGE:=∅;96

foreach el ∈ currentG do97

if el touches currentPH do98

openGE.add(el);99

od100

od101

while openGE!=∅ do102

currentEl:=openGE.firstEl;103

openGE.delete(currentEl);104

if currentEl is node do105

expandE(currentG,currentPH.index, openGE,dispoE,currentEl);106

else107

expandN(currentG,currentPH.index,openPH,openGE,dispoN,108

anCands,currentEl);109

od110

od111

Algorithm 1 details the steps of building add graphs. The input is a sub-
workflow tree including the atomic edit operations that is built from the two
workflow versions as described above. The algorithm passes through the sub-
workflow graph in a breadth first search to start constructing the add graphs
at each sub-workflow level by the function createMaxConGraphs. The function
creates and extends one sub-graph after the other employing an ’open’ list of



graph elements (nodes and edges), which is a well known principle from search
algorithms in artificial intelligence. If the recent add graph is extended by a work-
flow element the element is moved from the list of disposable elements (nodes
dispoN and edges dispoE) to the list of open graph elements (openGE). If the
element has been fully expanded in the sub-graph, i.e. if all of its touching edges
(or nodes, in case of an edge) from the lists of disposable elements have been
investigated, it is deleted from the list of open graph elements. The algorithm
starts with the initialization of the dispo lists at each sub-workflow level (lines
7, 8, and 12 – 16 of Alg. 1). The workflow nodes that are not part of any add or
delete list are stored in the anCands lists as they might serve as anchors (lines 9
and 17 – 19). For each node of the sub-workflow tree, the maximum connected
graphs are computed by calling createMaxConGraphs. Within this function, an
additional recursive decent into lower sub-workflow levels is required if an add
graph extends into lower-level sub-workflows. However, the creation of an add
graph is always started at the higest possible level. At one level, several dis-
tinct sub-workflows may start. An add graph starts with one node as initial
graph (l. 34) and is extended by edges (l. 43) and nodes (l. 46) from the dispon-
able elements. openGE records all graph elements (nodes and edges) of an add
graph that are still to be expanded (line 38 and within the functions expandE

and expandN). Placeholders are recorded in openPH (lines 35 – 37 and within
the function expandN) in order to expand the add graph further in function
expandSFW when all elements at the same level have been investigated (lines 47
– 52). After all initial graphs have been expanded, some edges might be left in
openEdges. They are expanded by anchor nodes (lines 59 – 66) to form chains
with one element only.

5 Experimental Results

The hypotheses posed at the beginning of this paper have been tested by ex-
periments with scientific workflows retrieved from the community repository at
www.myexperiment.org. Hypothesis I on the applicability of case-based adap-
tation methods for scientific workflows has been split into two parts investigated
by manual experiments, while hypothesis II on the automated construction of
adaptation cases has been investigated by comparing the results of an imple-
mentation of Algorithm 1 with the manual results gained from the experiments
on hypothesis I. The following questions guided the experiments:

(Ia) Applicability: Can adaptation cases with chains and anchors be constructed
that record the adaptation episodes of scientific workflows?

(Ib) Applicability: Does the reuse of the cases lead to feasible results?
(II) Automated construction: Can adaptation cases be captured automatically

from community repositories? Is the quality of the automated results com-
parable to the quality of reference results acquired by experts?

We started to manually create a case base with eleven cases including the
sample case in Fig. 1. The xml files retrieved from the repository only consist of



atomic elements such as tasks and data objects and relational link elements, so
we would have to draw the workflows manually to understand all dependencies.
For that reason we used as additional source for the creation the automatically
rendered representation of workflow versions because it would have been a very
tedious work to compare the xml files without further utilities. Although this
seems to be a quite small number of cases for a case base it took a large part
of time of this work. This is purely owed the complexity of scientific workflows.
We ensured that the workflows in our adaptation cases use all workflow elements
from the Scufle modeling language. In some adaptation cases we have chains with
more than 45 conjoined workflows elements which are connected over several
hierarchical levels. In such cases it is difficult for a human to follow all links of a
complex workflow bi-directional. Nevertheless the eleven adaptation cases could
be created successfully. This provides a reference solution for the computed cases
in (II) and confirms hypothesis (Ia).

Hypothesis (Ib) has been investigated by grab samples only. One sample
target workflow is depicted in Fig. 3 which contains the same tmap Soaplab
service as the anterior workflow of our sample adaptation case in Fig. 1. Hence,
the change described by the adaptation case could be transferred to the sample
target workflow. Admittedly, the grap samples give a first hint only that the
automated adaptation would work in principle. Further evidence is required from
experiments that will be part of our future work. The next step in our work is to
test if the chains in the automatically acquired cases can be used to reconstruct
the given cases. For this purpose we will investigate whether the mapping of
anchors [10] can be applied to scientific workflows too. If these tests will be
successful we will be able to create a large case base with reusable adaptation
cases and conduct further experiments on re-purposing the adaptation episodes
on other target workflows.

For hypothesis (II), we implemented Algorithm 1 in Java. Running the algo-
rithm lead to slightly different results from the reference solution. Only six cases
were identical to the reference solution. Surprisingly, four of the other five cases
showed up small failures in the reference solution. The algorithm can also detect
port changes in a link between data objects and tasks. Because these details are
not illustrated in the graphical representation as described in Sect.2 it is hardly
possible to determine such changes manually. Other failures that orrcurred in
the reference solution chains are miss-spellings of element names that have been
overseen (e.g. ’organsim’ instead of ’organism’) and small changes between work-
flow versions which only lead to very small chains in a case. The anchors of the
reference solution only differred in one case from the automatically created so-
lution, but also in this case it was due to a human error that an anchor was
overseen in the reference solution. Only in one case a minor deviation from the
’optimal’ solution occurred: Changes crossing a sub-workflow by a continuous
path but not affecting the entire sub-workflow led to the effect that the place-
holder task for this sub-workflow did not appear within the change lists. As a
consequence, the algorithm divided the edit chain into two chains, while the ref-
erence solution modeled one chain only. In order to deal with such special cases,



Fig. 3. Sample target workflow retrieved from www.myexperiment.org for that the case
from Fig. 1 would be applicable.



the algorithm could be extended by unifying chains that contain paths through
a sub-workflow. As a result from the automatic acquisition of adaptation cases
we got the experimental confirmation that the algorithm works very well. It is
evident that the manual acquisition is not only time consuming but also fault-
prone for small changes in workflow versions. Concluding we regard hypothesis
II to be confirmed by the experimental results.

6 Related Work

Related work from the field of scientific workflow reasoning and from the field
of case-based workflow adaptation will be discussed in the following. Goderis
[4] deals with the discovery of scientific workflows and workflow elements by
techniques of information retrieval, ontology reasoning, and graph matching.
Workflow adaptation is not addressed. Gil [2] develops a vision of a knowledge
level view on workflows for reasoning tasks like workflow generation and vali-
dation, automated data/parameter selection or metadata generation. The work-
flow system Wings assists scientists in some of these tasks by means of semantic
metadata. Adaptation support is not mentioned but is very closed to work-
flow generation. The following approaches as well as our own previous work [11]
employ case-based methods to give adaptation advice to the users. Leake and
Morwick [7] provide case-based support for workflow generation by evaluating
the execution traces of scientific workflows. Weber et al. [15] employ conversa-
tional CBR for the adaptation of health workflows. Montani and Leonardi [12]
focus on case-based workflow monitoring based on execution traces also in the
health domain. Kapetanakis et al. [6] employ case-based workflow monitoring
by means of temporal relationships in the area of business workflows. In our
recent previous work [10], we extend the scope towards automated adaptation of
workflows. In contrast to this work, the adaptation knowledge is still captured
by experts.

7 Conclusion

In this paper, the automated acquisition of adaptation cases from community
repositories of scientific workflows has been investigated. First, the work resulted
in the confirmation that case-based adaptation methods developed for workflow
reasoning on business workflows can be transferred to scientific workflows in
principle. Data dependencies can be included into the methods that have been
control flow-oriented so far. However, details of data dependencies like the data
ports of the concerned Web services have not yet been addressed by the solution
provided so far. Future work on the internals of workflow elements could close this
gap. Second, an algorithm for the automated acquisition of adaptation cases led
to feasible experimental results. The overall outcome of this work is promising
for an application of the case-based workflow adaptation methods to further
fields like workflows in computer games[14] or personal workflows[5].



References

1. J. Becker, P. Bergener, D. Breuker, and M. Räckers. On measures of behavioral
distance between business processes. In A. Bernstein and G. Schwabe, editors,
Proceedings of the 10th International Conference on Wirtschaftsinformatik, volume
Vol. 2, pages 665–674. 2011.

2. Y. Gil. From data to knowledge to discoveries: Artificial intelligence and scientific
workflows. Scientific Programming, 17(3):231–246, 2009.

3. Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble,
M. Livny, L. Moreau, and J. Myers. Examining the challenges of scientific work-
flows. Computer, 40(12):24 – 32, 2007.

4. A. Goderis. Workflow Re-use and Discovery in Bioinformatics. PhD thesis, Uni-
versity of Manchester, 2008.

5. S. Y. Hwang and Y. F. Chen. Personal workflows: Modeling and management. In
Mobile Data Management, page 141–152, 2003.

6. S. Kapetanakis, M. Petridis, B. Knight, J. Ma, and L. Bacon. A case based rea-
soning approach for the monitoring of business workflows. Case-Based Reasoning.

Research and Development, page 390–405, 2010.
7. D. B. Leake and J. Kendall-Morwick. Towards Case-Based support for e-Science

workflow generation by mining provenance. In Advances in Case-Based Reasoning,

9th European Conference, ECCBR 2008, Trier, Germany, September 1-4, 2008.

Proceedings, pages 269–283, 2008.
8. B. Ludäscher, M. Weske, T. McPhillips, and S. Bowers. Scientific Workflows:

Business as Usual? In U. Dayal, J. Eder, J. Koehler, and H. A. Reijers, editors,
Proceedings BPM 2009, LNCS 5701, pages 31 – 47, Heidelberg, 2009. Springer.

9. T. Madhusudan, J. L. Zhao, and B. Marshall. A case-based reasoning framework
for workflow model management. Data & Knowledge Engineering, 50(1):87–115,
2004.

10. M. Minor, R. Bergmann, S. G\örg, and K. Walter. Towards Case-Based adaptation
of workflows. In Case-Based Reasoning. Research and Development, page 421–435,
2010.

11. M. Minor, A. Tartakovski, and R. Bergmann. Representation and structure-based
similarity assessment for agile workflows. In Case-Based Reasoning Research and

Development, page 224–238, 2007.
12. S. Montani and G. Leonardi. A Case-Based approach to business process monitor-

ing. Artificial Intelligence in Theory and Practice III, 331/2010:101–110, 2010.
13. T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,

K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition
and enactment of bioinformatics workflows. Bioinformatics, 20(17):3045 –3054,
Nov. 2004.

14. A. Ram, S. O. nón, and M. Mehta. Artificial intelligence for adaptive computer
games. In Twentieth International FLAIRS Conference on Artificial Intelligence,
2007.

15. B. Weber, W. Wild, and R. Breu. CBRFlow: Enabling Adaptive Workflow Man-
agement Through Conversational Case-Based Reasoning. In P. Funk and P. A.
González-Calero, editors, Advances in Case-Based Reasoning, 7th European Con-

ference, ECCBR 2004, Madrid, Spain, August 30 - September 2, 2004, Proceedings,
volume 3155 of Lecture Notes in Computer Science, pages 434 – 448. Springer, 2004.


