
Adaptation of Cooking Instructions Following the
Workflow Paradigm

Mirjam Minor, Ralph Bergmann, Sebastian Görg, Kirstin Walter

Business Information Systems II
University of Trier

54286 Trier, Germany
{minor|bergmann|goer4105|walt4701}@uni-trier.de

Abstract. Former CCC systems have considered mainly the ingredients of
cooking recipes. This paper contributes to the open challenge with a novel
approach that targets the preparation instructions. Our demo system
CookingCakeWf employs the workflow paradigm to represent and adapt
cooking instructions in form of cookery workflows. Adaptation cases on former
modification episodes of cookery workflows are reused for current change
requests. A small experimental evaluation with cookery workflows created
from pasta recipes of the CCC 2010 recipe base provides first insights into
case-based adaptation of cookery workflows.

1 Introduction

The International Computer Cooking Contest (CCC) is going into its third year.
Cooking recipes are given in a case base to be retrieved and reused with the assistance
of a computer system. The participating teams compete by their systems providing
recipes in order to answer cooking wishes. The main task has been nearly the same
over the years while additional challenges are changing to address recent
developments in Case-based Reasoning. This year, the contest includes an open
challenge for the first time. This paper adopts the open challenge by focusing on the
cooking instructions and on how to adapt them to cooking wishes. For this, the textual
cooking instructions are formally represented. We employ the workflow paradigm to
represent cooking instructions as cookery workflows. A case-based adaptation
method [1] developed for agile workflow technology is extended to adapt cookery
workflows. Both, the control flow (of cooking steps) and the data flow (of ingredients
and their products) are considered. The latter has not yet been addresses by previous
work on automated workflow adaptation [1]. The output of our CCC open challenge
system CookingCakeWf is an adapted workflow not yet a textual cooking
instruction. The automated generation of text from the workflow representation is a
topic of future work as well as the automated transformation of the original textual
description of a cooking description into a formal workflow. Additionally, we

2 Mirjam Minor, Ralph Bergmann, Sebastian Görg, Kirstin Walter

participate at the CCC main challenge with our last year’s system CookingCake1
which is described in the literature [2].
The paper is organized as follows: Section 2 introduces a formal representation of the
cookery workflows. Section 3 presents a novel case format for adaptation knowledge.
Section 4 describes the methods for applying the adaptation knowledge to the
workflows. Section 5 demonstrates the feasibility of the approach by means of a first
experimental evaluation.

<RECIPE>

 <TI>Baked Spaghetti</TI>
 <IN>1 c Chopped onion</IN>

<IN>1 c Chopped green pepper</IN>
<IN>1 tb Butter/margarine</IN>
<IN>1 cn (28 oz.) Tomatoes with liquid; cut up</IN>
<IN>1 cn (4 oz.) Mushroom stems and 1 piece - drained</IN>
<IN>1 cn (2-1/4 oz.) Ripe olives, sliced and drained</IN>

 <IN>2 ts Dried oregano</IN>
 <IN>1 lb Ground beef, browned and drained (optional)</IN>

<IN>12 oz Spaghetti, cooked & drained</IN>
<IN>2 c (8 oz.) shredded cheddar cheese</IN>

 <IN>1 cn (10-3/4 oz) Condensed cream</IN>
<IN>Mushroom soup; undiluted</IN>

 <IN>1/4 c Water</IN>
 <IN>1/4 c Parmesan cheese, grated</IN>

 <PR>In a large skillet, saute onion and green pepper in butter until
tender. Add tomatoes, mushrooms, olives and oregano. Add ground
beef if desired. Simmer, uncovered, for 10 minutes. Place half of the
spaghetti in a greased 13-inch x 9-inch x 2-inch baking dish. Top
with half of the vegetable mixture. Sprinkle with 1 cup of cheddar
cheese. Repeat layers. Mix the soup and water until smooth; pour
over casserole. Sprinkle with Parmesan cheese. Bake, uncovered, at
350 degrees for 30-35 minutes, or until heated throughout. </PR>

 </RECIPE>

Fig. 1: Sample cooking recipe on Baked Spaghetti from the CCC recipe base.

2 Cookery workflows

Cooking recipes are usually described by a list of ingredients and a cooking
instruction. Fig. 1 shows a sample recipe description of a pasta recipe from the CCC
recipe base in XML. The title of the recipe (<TI>…</TI>) is followed by a list of
ingredients (<IN>…</IN>) and a textual cooking instruction (<PR>…</PR>). Many
internet platforms on cooking use a comparable XML representation of the cookery
data.
This semi-structured representation has been transformed into a more formal
workflow representation for our CCC system by a human expert. Workflows describe
processes by means of tasks (activities) that are organized within a control flow. The

1 See also http://proj2.wi2.uni-trier.de/

Adaptation of Cooking Instructions Following the Workflow Paradigm 3

CAKE workflow modeling language (compare [3]) consists of several types of
workflow elements whose instances form block-oriented control flow structures. A
workflow element can be a task, a start symbol, an end symbol, or a control flow
element like an AND, XOR, loop etc. Control flow elements always define related
blocks (AND-block, XOR-block etc.). Blocks cannot be interleaved but they can be
nested. In addition to the control flow, a workflow can have a data flow, which is the
flow of data objects from one workflow element to a successor workflow element.
The data flow is specified by means of data links that connect the data objects with
workflow elements. In a cookery workflow, every ingredient is considered a data
object while the preparation steps form the workflow tasks within a control flow.
Preparation steps and control flow are extracted from the textual cooking instruction
as well as the data links that connect the data objects (ingredients) with the tasks
(preparation steps). Fig. 2 a) illustrates this by showing the workflow representation
for the sample recipe from Fig. 1. Some challenges concerning the control flow (1),
the data objects (2), and the data links (3) had to be be faced during the
transformation:

(1) The cooking instructions suffer from both, a granularity and a paraphrase
problem. Granularity means that some authors describe instruction steps in
great detail (e.g. peel and chop onions, melt butter in a large skillet, add
onions and beef, wait until brown) while others aggregate minor steps to
higher-level activities (e.g. brown beef and onions). Despite granularity
models have been discussed in the workflow literature [4], we have decided
to avoid the granularity problem in the work by harmonizing the granularity
of workflow tasks by hand. However, the granularity problem has to be
solved in future work on the automated transformation of recipes into the
workflow representation. The second challenge when defining the control
flow of cookery tasks is the vocabulary. The paraphrase problem occurs
here as well, which addresses the non-uniform wording used in texts from
different authors (e.g. sauté vs. brown). Using a task ontology would solve
this problem to a large extent (compare the discussion at the end of Section
4).

(2) The representation of data objects (ingredients) raises some issues
concerning the preparation states, amounts, and double (or multiple)
occurrences of ingredients. Although these issues have been discussed by
former CCC systems already, they deserve special attention in the context of
workflow adaptation. The preparation states of the ingredients (one piece,
chopped, sautéed, cooked etc.) could be represented by multiple data objects
(whole onions, sliced onions, chopped onions, etc.) or by the same data
object with the preparation state represented as a variable property. The
amounts of the ingredients can be represented as a data object property as
well. Double (or multiple) occurrences of ingredients in different roles (e.g.
butter to brown onions and flakes of butter for a topping) can be represented
either as different objects (e.g. butter and flakes of butter, or butter one and
butter two) or as a single object. For simplicity reasons, we have chosen the
latter and to abstain from representing any properties (amounts, state of

4 Mirjam Minor, Ralph Bergmann, Sebastian Görg, Kirstin Walter

a) Original workflow:

b) Change request:

Replace ground beef by spelt-grain
PROBLEM PART

SOLUTION PART
c) Adaptation steps:

d) Adapted workflow:

Fig. 2: Adaptation case on the sample cooking recipe from Fig. 1.

Adaptation of Cooking Instructions Following the Workflow Paradigm 5

preparation) at the moment. In the future, this approach can be improved by
an extended representation.

(3) Preparation tasks consume ingredients and produce transformed ingredients
or aggregates of ingredients. Data links connect data objects with tasks. In
general workflows, the data objects can play the role of input or output data
for the tasks. A complete model would include an input connection between
a data object and every task using it as an input and an output connection for
every product resulting from a task. Data objects for aggregated objects (e.g.
a document collection made from two different forms and a copy of a
certificate, or a sauce made from onions and tomatoes) would be created by
the task that aggregates the objects. However, textual cooking instructions
tend to be underspecified due to the human principle of economy in
language. Our analysis of the CCC recipe base has shown that the data links
for the input of ingredients are more frequently described than for the
outputs. Transformed ingredients and aggregates occur very seldom in the
instructing texts. Hence, we do consider only inputs at their first occurrence,
except for those ingredients that occur in multiple roles as described above.

3 Adaptation cases for cookery workflows

An adaptation case represents the knowledge from a previous adaptation episode of a
workflow. Our case representation consists of a problem and a solution part as
following: The problem part contains a semantic description of the change request
(specifies a desire to modify the recipe, e.g. to replace ground beef by spelt-grain to
reduce the fat content) and the original workflow prior to the adaptation. The solution
part contains the adapted workflow and the description of the adaptation steps that
have been executed to transform the original workflow into the adapted workflow
(added and deleted workflow elements, e.g. delete the ground beef with its data links
and add new data objects for spelt-grain and stock plus the preparation steps for
preparing them and the required data links). Fig. 2 shows a sample adaptation case by
which baked spaghetti have been made according to the original recipe given in Fig. 2
a) but with spelt-grain instead of ground beef. Fig. 2 d) shows the adapted workflow:
The spelt-grain has to be cooked in stock before it can be added. Please note that
aggregates and preparation states are omitted in the current representation. A
complete model would include an aggregated object for “cooked spelt-grain” with an
output data link from the task “cook” and an input data link to the task “add”.
Like in our previous work [1], the adaptation steps are organized within an add and a
delete list. In extension of the previous work, an add or delete step may refer to a
workflow element, a data object or a data link. The add and delete lists organize the
add and delete steps in the form of chains. A chain encapsulates a set of adaptation
steps on connected workflow elements, data objects, and data links. A chain is
intended to be either fully applied or not applied at all while reusing the adaptation
case. Further, each chain records a pair of anchors. A pre anchor is the workflow
element or data object (in the original workflow) after which the add or delete steps

6 Mirjam Minor, Ralph Bergmann, Sebastian Görg, Kirstin Walter

from the chain have been applied. A special ‘null’ element is used as anchor in case
an appropriate data or workflow element is not available, for instance if a data object
is newly created or deleted. A post anchor is the workflow element from the original
workflow following the last element of the chain. We assume that data objects do not
play the role of a post anchor at the moment. This might change in future in case
output data links will be included. Hence, the pre anchor describes the position after
which the adaptation starts and the post anchor describes the first position in the
original workflow that is not anymore affected by the adaptation described in the
chain. Fig. 2 c) illustrates this by sample add and delete lists. We have decided to
model very fine granular chains in order to apply as much of the adaptation steps as
possible. Another modeling strategy would be to maximize the chains, for instance to
combine the add chains 1, 2, 3, 4, and 6 to one chain with one anchor pair. This would
reduce the effort for the anchor matching at the cost of a higher modeling effort to
revise the workflow.

4 Applying adaptation cases to new situations

We now focus on the retrieve and reuse phase of the CBR cycle [5]. The revise and
retain phases are not yet considered to be automated. The retrieval of workflow
adaptation cases that may be reused for the adaptation of new cookery workflows is
also not within the scope of this paper. We refer to the literature [1] for a discussion
of similarity measures that come into consideration for the retrieve phase. Fig. 3
depicts a sample query for which the adaptation case shown in Fig. 2 would be
applicable.
The reuse phase has to solve two main issues: First to determine the locations where
the adaptation steps from the retrieved adaptation case should be applied to the target
workflow and, second, to execute these adaptation steps. The change locations in the
target workflow are determined by mapping the anchors from the retrieved case. The
composite anchor mapping method described in our previous work [1] is extended in
order to consider the data flow in addition. The mapping method consists of two
steps, which we briefly sketch below:

(1) Valid candidate positions for anchors are chosen within the set of workflow
elements and data objects of the target workflow. A data object anchor can
be mapped to the position of a data object in the target workflow only if the
data objects are sufficiently similar (above a validity threshold for data
objects). Workflow element anchors can be mapped only to similar
workflow element positions analogously (above a validity threshold for
workflow elements). Similarity functions for both, data objects and
workflow elements will be discussed below. The valid candidate positions
are described by a set of triples [wfl_elretrieved, wfl_eltarget_wfl,
simwfl_el(wfl_elretrieved, wfl_eltarget_wfl)] and [data_objretrieved, data_objtarget_wfl,
simdata_obj(data_objretrieved, data_objtarget_wfl)] with similarity values higher
than the specified validity thresholds.

Adaptation of Cooking Instructions Following the Workflow Paradigm 7

a) Original workflow:

b) Change request:

Replace ground beef by spelt-grain

Fig. 3: Sample query to adapt a recipe on a beef noodle casserole.

Fig. 4: Adaptation result (reference solution).

Fig. 5: Adaptation result (actually generated solution).

8 Mirjam Minor, Ralph Bergmann, Sebastian Görg, Kirstin Walter

(2) The best matching positions from the set of valid candidate positions are
selected to construct the anchor mapping. Pairs of workflow element anchors
(pre and post anchor) have to preserve their order in the target workflow
according to a precedence relation of workflow elements that is induced by
the control flow. Additionally, the mapped positions of pairs of workflow
element anchors must be at direct neighbors according to the same
precedence relation in case of a chain from the add list while they must not
be direct neighbors in case of a chain from the delete list. The mapping
algorithm employs a hill climbing search to find mapping positions with an
optimal overall anchor similarity.

The application of the adaptation chains is different for add and delete operations.
The add operations are executed immediately for all chains of which at least one
anchor has been mapped successfully. Chains from the delete list are applied only if a
complete mapping of their particular delete steps to workflow and data flow elements
can be constructed. The mapping algorithm for delete steps considers pairs of
elements (workflow elements, data objects and data links) from the retrieved and the
target workflow whose similarity value is above a threshold called delete threshold.
Additionally, it is required that the elements to be deleted are organized in exactly the
same structural order (control flow or data flow) than those in the chain. Thus, in
order to be applied, the delete operations have to fulfill stronger constraints than the
add operations.

The similarity measures for workflow elements (simwfl_el), data objects (simdata_obj)
and data links (simdata_links) that are required during the reuse phase are specified as
follows:

simwfl_el distinguishes tasks from control flow elements. In case of tasks it
aggregates the similarity measure for the sets of input parameters (siminputs), the
similarity measure for the task name (simtask_name), and the similarity of the task
description (simtask_descr) by a weighted sum in simtask. The three constituent measures
of simtask are specified based on the Levenshtein distance. The Levenshtein distance is
purely syntactic and measures the minimum number of edit operations on the
character level that is required to transform one string into another. simtask_name and
simtask_descr employ the Levenshtein distance directly on the task name and on the
textual task description. siminputs matches the input parameters (data links) based on
the Levenshtein distance of the names of their according data objects by means of a
hill climbing search. simcontrol_flow_el measures the similarity of the set of tasks included
in the block in case of a block-building control flow element like AND-split or AND-
join (again, a hill climbing search is applied to map the two sets of tasks to each
other). simdata_obj employs the Levensthein distance on the names of the data objects as
the data objects do not yet store any properties like amounts or preparation states. If
the special data object ‘null’ is one of the arguments of simdata_obj, the value is set to 0

Adaptation of Cooking Instructions Following the Workflow Paradigm 9

and to 1 if both arguments are ‘null’. simdata_links aggregates the local similarity
measures simdata_obj and simwfl_el.
Fig. 4 and 5 illustrate that the chosen similarity measures are still to be improved as
the automatically generated solution in Fig. 5 could not transfer all adaptation steps
from the case described in Fig. 2 c). For instance, the data links from spelt-grain to
mix is missing as the syntactic similarity measure was not able to map the anchor at
“add” in the retrieved workflow on “mix” in the target workflow. Also, the task
names within the AND block of the retrieved workflow {“saute”, “add”, “simmer”,
“place in baking dish”, “mix”} have not been similar enough to the task names within
the AND block of the target workflow {“brown”, “mix”, “place in casserole”,
“combine”} so that the post anchor for adding the task “cook” could not be positioned
in the target workflow. Semantic similarity measures, for instance based on a task
ontology, would probably provide better results.

5 Experimental evaluation and discussion

The system is implemented in a demo version. As starting point for a first evaluation
we use a reduced recipe base containing 39 pasta recipes from in the CCC recipe
base. Based on seven recipes taken from this pasta excerpt 30 different change
requests were constructed by using our own experiences in cooking. Typical change
requests replace one ingredient by another or avoid a certain ingredient. Thereby, an
experimental case base of 30 adaptation cases (see Chapter 4 for the case structure)
was created by hand. Most of the included adaptation steps concern the data objects
and the data links, some adaptations involve adding or deleting workflow elements
(preparation steps). We conducted two experiments described below.

The aim of the first experiment was to evaluate whether the suggested adaptation
method is able to correctly reconstruct the adapted workflows from the adaptation
steps described in the 30 adaptation cases. This requires finding the proper anchor
positions, which should not be affected by the chosen similarity measures as only
identical matches are required for this reconstruction. In line with our hypothesis, all
adapted workflows could be reconstructed correctly.

In the second experiment the adaptations cases were applied to new recipes. For
this purpose, 14 test queries have been created by arbitrarily selecting 14 different
change requests from the adaptation case base of the first experiment and combining
them with other cookery workflows. We selected recipes from the pasta recipe base
for that the change requests can be tastefully applied. For instance, a change request
on replacing ground beef by spelt-grain applies to a recipe only that contains ground
beef as an ingredient and that would still be tasty when becoming vegetarian.

10 Mirjam Minor, Ralph Bergmann, Sebastian Görg, Kirstin Walter

Fig. 6: Results of Experiment 2.

As the retrieval is not part of this evaluation the best-fitting adaptation case is
chosen for each query by hand. The resulting adapted workflow is compared to a
solution obtained by manually transferring the respective adaptation steps to the
workflow (see Fig. 6). Altogether, half of the test cases were adapted totally correctly.
In the remaining cases, at least the data objects could be added correctly, while the
correctness of added data links is only approximately 50%. Also only about 60% of
the possible delete operations of data links are applied. This is a clear indication that
the currently used syntactic similarity measure is insufficient for our purposes.
Further experiments with improved similarity measures using the CookingCake’s
ingredient ontology [2] as well as a task ontology (for preparation steps) will be
necessary. However, we believe that the first results are quite promising and confirm
that our idea on following the workflow paradigm during the automated adaptation of
cookery instructions is feasible in principle.

6 References

1. Minor, M., Bergmann, R., Görg, S., Walter, K.: Towards Case-Based Adaptation of
Workflows. In: Proc. ICCBR’10, to appear.

2. Fuchs, C., Gimmler, C., Günther, S., Holthof, L., Bergmann, R.: Cooking Cake, In: S.
Delany (ed.) ICCBR’09 Workshop Proceedings, pp. 259 – 268, 2009.

3. Minor, M., Tartakovski, A., Schmalen, D., Bergmann, R.: Agile Workflow Technology and
Case-Based Change Reuse for Long-Term Processes. International Journal on Intelligent
Information Technologies 4(1), pp. 80-98, 2008.

4. Holschke, O., Rake, J., Levina, O.: Granularity as a Cognitive Factor in Effectiveness of
Business Process Model Reuse, In: U. Dayal et al. (Eds.), BPM 2009, LNCS 5701, pp. 245
– 260, Springer, 2009.

5. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Communications, 7(1), pp. 39-59, 1994.

0
2
4
6
8
10
12
14

d
at
a
lin
ks

d
at
a
o
b
je
ct
s

w
fl
 e
le
m
en

ts

d
at
a
lin
ks

d
at
a
o
b
je
ct
s

w
fl
 e
le
m
en

ts

ADD DELETE

not adapted

correctly
adapted

